This documentation is automatically generated by online-judge-tools/verification-helper
from cp_library.alg.iter.sort.isort_parallel_fn import isort_parallel
from cp_library.alg.iter.sort.sort_parallel_fn import sort_parallel
import cp_library.__header__
from cp_library.io.parser_cls import Parsable, TokenStream
import cp_library.alg.__header__
import cp_library.alg.graph.__header__
from cp_library.alg.iter.arg.argsort_fn import argsort
from cp_library.bit.pack.packer_cls import Packer
class EdgeListWeighted(Parsable):
def __init__(E, N: int, U: list[int], V: list[int], W: list[int]): E.N, E.M, E.U, E.V, E.W = N, len(U), U, V, W
def __len__(E): return E.M
def __getitem__(E, e): return E.U[e], E.V[e], E.W[e]
@classmethod
def compile(cls, N: int, M: int, I: int = -1):
def parse(ts: TokenStream):
U, V, W = [0]*M, [0]*M, [0]*M
for e in range(M): u, v, w = ts.line(); U[e], V[e], W[e] = int(u)+I, int(v)+I, int(w)
return cls(N, U, V, W)
return parse
def kruskal(E):
dsu, I = DSU(E.N), elist(E.N-1)
for e in argsort(E.W):
x, y = dsu.merge(E.U[e], E.V[e])
if x != y: I.append(e)
return I
def edmond(E, root):
U, W, F, pkr, dsu = [0]*E.N, [0]*E.N, SkewHeapForrest(E.N, E.M), Packer(E.M), DSU(E.N)
Ein, stem, cyc, I, C = [-1]*E.M, [-1]*E.N, [], [], []; vis = [0]*E.N; vis[root] = 2
for e in range(E.M): F.push(E.V[e], pkr.enc(E.W[e], e))
for v in range(E.N):
if vis[v := dsu.root(v)]: continue
cycle = 0; C.clear()
while vis[v] != 2:
if F.empty(v): return None
vis[v] = 1; cyc.append(v); W[v], e = pkr.dec(F.pop(v)); U[v] = dsu.root(E.U[e])
if stem[v] == -1: stem[v] = e
if U[v] == v: continue
while cycle: Ein[C.pop()] = e; cycle -= 1
I.append(e); C.append(e)
if vis[U[v]] == 1:
if not F.empty(v): F.add(v, -W[v]<<pkr.s)
U[v] = p = dsu.root(U[v]); cycle += 1
while p != v:
if not F.empty(p): F.add(p, -W[p]<<pkr.s)
F.roots[v := dsu.merge_dest(v, p)] = F.merge(F.roots[v], F.roots[p])
U[p] = p = dsu.root(U[p]); cycle += 1
else:
v = U[v]
while cyc: vis[cyc.pop()] = 2
vis, T = [0]*E.M, []
for e in reversed(I):
if vis[e]: continue
f = stem[E.V[e]]; T.append(e)
while f != e: vis[f] = 1; f = Ein[f]
return T
def sort(E):
isort_parallel(E.W, E.U, E.V)
def sub(E, I: list[int]):
U, V, W = elist(E.N-1), elist(E.N-1), elist(E.N-1)
for e in I: U.append(E.U[e]); V.append(E.V[e]); W.append(E.W[e])
return E.__class__(E.N, U, V, W)
from cp_library.ds.dsu_cls import DSU
from cp_library.ds.elist_fn import elist
from cp_library.ds.heap.skew_heap_forrest_cls import SkewHeapForrest
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
def argsort(A: list[int], reverse=False):
P = Packer(len(I := list(A))-1); P.ienumerate(I, reverse); I.sort(); P.iindices(I)
return I
class Packer:
__slots__ = 's', 'm'
def __init__(P, mx: int): P.s = mx.bit_length(); P.m = (1 << P.s) - 1
def enc(P, a: int, b: int): return a << P.s | b
def dec(P, x: int) -> tuple[int, int]: return x >> P.s, x & P.m
def enumerate(P, A, reverse=False): P.ienumerate(A:=list(A), reverse); return A
def ienumerate(P, A, reverse=False):
if reverse:
for i,a in enumerate(A): A[i] = P.enc(-a, i)
else:
for i,a in enumerate(A): A[i] = P.enc(a, i)
def indices(P, A: list[int]): P.iindices(A:=list(A)); return A
def iindices(P, A):
for i,a in enumerate(A): A[i] = P.m&a
def isort_parallel(*L: list, reverse=False):
inv, order = [0]*len(L[0]), argsort(L[0], reverse=reverse)
for i, j in enumerate(order): inv[j] = i
for i, j in enumerate(order):
for A in L: A[i], A[j] = A[j], A[i]
order[inv[i]], inv[j] = j, inv[i]
return L
def sort_parallel(*L: list, reverse=False):
N, K, order = len(L[0]), len(L), argsort(L[0], reverse)
R = tuple([0]*N for _ in range(K))
for k, Lk in enumerate(L):
Rk = R[k]
for i, j in enumerate(order): Rk[i] = Lk[j]
return R
import typing
from collections import deque
from numbers import Number
from types import GenericAlias
from typing import Callable, Collection, Iterator, Union
import os
import sys
from io import BytesIO, IOBase
class FastIO(IOBase):
BUFSIZE = 8192
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
BUFSIZE = self.BUFSIZE
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b: break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
BUFSIZE = self.BUFSIZE
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
stdin: 'IOWrapper' = None
stdout: 'IOWrapper' = None
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
def write(self, s):
return self.buffer.write(s.encode("ascii"))
def read(self):
return self.buffer.read().decode("ascii")
def readline(self):
return self.buffer.readline().decode("ascii")
try:
sys.stdin = IOWrapper.stdin = IOWrapper(sys.stdin)
sys.stdout = IOWrapper.stdout = IOWrapper(sys.stdout)
except:
pass
from typing import TypeVar
_S = TypeVar('S')
_T = TypeVar('T')
_U = TypeVar('U')
class TokenStream(Iterator):
stream = IOWrapper.stdin
def __init__(self):
self.queue = deque()
def __next__(self):
if not self.queue: self.queue.extend(self._line())
return self.queue.popleft()
def wait(self):
if not self.queue: self.queue.extend(self._line())
while self.queue: yield
def _line(self):
return TokenStream.stream.readline().split()
def line(self):
if self.queue:
A = list(self.queue)
self.queue.clear()
return A
return self._line()
TokenStream.default = TokenStream()
class CharStream(TokenStream):
def _line(self):
return TokenStream.stream.readline().rstrip()
CharStream.default = CharStream()
ParseFn = Callable[[TokenStream],_T]
class Parser:
def __init__(self, spec: Union[type[_T],_T]):
self.parse = Parser.compile(spec)
def __call__(self, ts: TokenStream) -> _T:
return self.parse(ts)
@staticmethod
def compile_type(cls: type[_T], args = ()) -> _T:
if issubclass(cls, Parsable):
return cls.compile(*args)
elif issubclass(cls, (Number, str)):
def parse(ts: TokenStream): return cls(next(ts))
return parse
elif issubclass(cls, tuple):
return Parser.compile_tuple(cls, args)
elif issubclass(cls, Collection):
return Parser.compile_collection(cls, args)
elif callable(cls):
def parse(ts: TokenStream):
return cls(next(ts))
return parse
else:
raise NotImplementedError()
@staticmethod
def compile(spec: Union[type[_T],_T]=int) -> ParseFn[_T]:
if isinstance(spec, (type, GenericAlias)):
cls = typing.get_origin(spec) or spec
args = typing.get_args(spec) or tuple()
return Parser.compile_type(cls, args)
elif isinstance(offset := spec, Number):
cls = type(spec)
def parse(ts: TokenStream): return cls(next(ts)) + offset
return parse
elif isinstance(args := spec, tuple):
return Parser.compile_tuple(type(spec), args)
elif isinstance(args := spec, Collection):
return Parser.compile_collection(type(spec), args)
elif isinstance(fn := spec, Callable):
def parse(ts: TokenStream): return fn(next(ts))
return parse
else:
raise NotImplementedError()
@staticmethod
def compile_line(cls: _T, spec=int) -> ParseFn[_T]:
if spec is int:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([int(token) for token in ts.line()])
return parse
else:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([fn(ts) for _ in ts.wait()])
return parse
@staticmethod
def compile_repeat(cls: _T, spec, N) -> ParseFn[_T]:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([fn(ts) for _ in range(N)])
return parse
@staticmethod
def compile_children(cls: _T, specs) -> ParseFn[_T]:
fns = tuple((Parser.compile(spec) for spec in specs))
def parse(ts: TokenStream): return cls([fn(ts) for fn in fns])
return parse
@staticmethod
def compile_tuple(cls: type[_T], specs) -> ParseFn[_T]:
if isinstance(specs, (tuple,list)) and len(specs) == 2 and specs[1] is ...:
return Parser.compile_line(cls, specs[0])
else:
return Parser.compile_children(cls, specs)
@staticmethod
def compile_collection(cls, specs):
if not specs or len(specs) == 1 or isinstance(specs, set):
return Parser.compile_line(cls, *specs)
elif (isinstance(specs, (tuple,list)) and len(specs) == 2 and isinstance(specs[1], int)):
return Parser.compile_repeat(cls, specs[0], specs[1])
else:
raise NotImplementedError()
class Parsable:
@classmethod
def compile(cls):
def parser(ts: TokenStream): return cls(next(ts))
return parser
@classmethod
def __class_getitem__(cls, item):
return GenericAlias(cls, item)
class EdgeListWeighted(Parsable):
def __init__(E, N: int, U: list[int], V: list[int], W: list[int]): E.N, E.M, E.U, E.V, E.W = N, len(U), U, V, W
def __len__(E): return E.M
def __getitem__(E, e): return E.U[e], E.V[e], E.W[e]
@classmethod
def compile(cls, N: int, M: int, I: int = -1):
def parse(ts: TokenStream):
U, V, W = [0]*M, [0]*M, [0]*M
for e in range(M): u, v, w = ts.line(); U[e], V[e], W[e] = int(u)+I, int(v)+I, int(w)
return cls(N, U, V, W)
return parse
def kruskal(E):
dsu, I = DSU(E.N), elist(E.N-1)
for e in argsort(E.W):
x, y = dsu.merge(E.U[e], E.V[e])
if x != y: I.append(e)
return I
def edmond(E, root):
U, W, F, pkr, dsu = [0]*E.N, [0]*E.N, SkewHeapForrest(E.N, E.M), Packer(E.M), DSU(E.N)
Ein, stem, cyc, I, C = [-1]*E.M, [-1]*E.N, [], [], []; vis = [0]*E.N; vis[root] = 2
for e in range(E.M): F.push(E.V[e], pkr.enc(E.W[e], e))
for v in range(E.N):
if vis[v := dsu.root(v)]: continue
cycle = 0; C.clear()
while vis[v] != 2:
if F.empty(v): return None
vis[v] = 1; cyc.append(v); W[v], e = pkr.dec(F.pop(v)); U[v] = dsu.root(E.U[e])
if stem[v] == -1: stem[v] = e
if U[v] == v: continue
while cycle: Ein[C.pop()] = e; cycle -= 1
I.append(e); C.append(e)
if vis[U[v]] == 1:
if not F.empty(v): F.add(v, -W[v]<<pkr.s)
U[v] = p = dsu.root(U[v]); cycle += 1
while p != v:
if not F.empty(p): F.add(p, -W[p]<<pkr.s)
F.roots[v := dsu.merge_dest(v, p)] = F.merge(F.roots[v], F.roots[p])
U[p] = p = dsu.root(U[p]); cycle += 1
else:
v = U[v]
while cyc: vis[cyc.pop()] = 2
vis, T = [0]*E.M, []
for e in reversed(I):
if vis[e]: continue
f = stem[E.V[e]]; T.append(e)
while f != e: vis[f] = 1; f = Ein[f]
return T
def sort(E):
isort_parallel(E.W, E.U, E.V)
def sub(E, I: list[int]):
U, V, W = elist(E.N-1), elist(E.N-1), elist(E.N-1)
for e in I: U.append(E.U[e]); V.append(E.V[e]); W.append(E.W[e])
return E.__class__(E.N, U, V, W)
class DSU(Parsable):
def __init__(dsu, N): dsu.N, dsu.cc, dsu.par = N, N, [-1]*N
def merge(dsu, u, v):
x, y = dsu.root(u), dsu.root(v)
if x == y: return x,y
if dsu.par[x] > dsu.par[y]: x, y = y, x
dsu.par[x] += dsu.par[y]; dsu.par[y] = x; dsu.cc -= 1
return x, y
def root(dsu, i) -> int:
p = (par := dsu.par)[i]
while p >= 0:
if par[p] < 0: return p
par[i], i, p = par[p], par[p], par[par[p]]
return i
def groups(dsu) -> 'CSRIncremental[int]':
sizes, row, p = [0]*dsu.cc, [-1]*dsu.N, 0
for i in range(dsu.cc):
while dsu.par[p] >= 0: p += 1
sizes[i], row[p] = -dsu.par[p], i; p += 1
csr = CSRIncremental(sizes)
for i in range(dsu.N): csr.append(row[dsu.root(i)], i)
return csr
__iter__ = groups
def merge_dest(dsu, u, v): return dsu.merge(u, v)[0]
def same(dsu, u: int, v: int): return dsu.root(u) == dsu.root(v)
def size(dsu, i) -> int: return -dsu.par[dsu.root(i)]
def __len__(dsu): return dsu.cc
def __contains__(dsu, uv): u, v = uv; return dsu.same(u, v)
@classmethod
def compile(cls, N: int, M: int, shift = -1):
def parse_fn(ts: TokenStream):
dsu = cls(N)
for _ in range(M): u, v = ts._line(); dsu.merge(int(u)+shift, int(v)+shift)
return dsu
return parse_fn
from typing import Sequence
class CSRIncremental(Sequence[list[_T]]):
def __init__(csr, sizes: list[int]):
csr.L, N = [0]*len(sizes), 0
for i,sz in enumerate(sizes):
csr.L[i] = N; N += sz
csr.R, csr.A = csr.L[:], [0]*N
def append(csr, i: int, x: _T):
csr.A[csr.R[i]] = x; csr.R[i] += 1
def __iter__(csr):
for i,l in enumerate(csr.L):
yield csr.A[l:csr.R[i]]
def __getitem__(csr, i: int) -> _T:
return csr.A[i]
def __len__(dsu):
return len(dsu.L)
def range(csr, i: int) -> _T:
return range(csr.L[i], csr.R[i])
def elist(est_len: int) -> list: ...
try:
from __pypy__ import newlist_hint
except:
def newlist_hint(hint):
return []
elist = newlist_hint
import operator
from typing import Generic
class SkewHeapForrest(Generic[_T]):
def __init__(shf, N, M, e: _T = 0, op = operator.add):
shf.V, shf.A, shf.L, shf.R, shf.roots = [e]*M, [e]*M, [-1]*M, [-1]*M, [-1]*N
shf.id, shf.st, shf.e, shf.op = 0, elist(M), e, op
def propagate(shf, u: int):
if (a := shf.A[u]) != shf.e:
if ~(l := shf.L[u]): shf.A[l] = shf.op(shf.A[l], a)
if ~(r := shf.R[u]): shf.A[r] = shf.op(shf.A[r], a)
shf.V[u] = shf.op(shf.V[u], a); shf.A[u] = shf.e
def merge(shf, u: int, v: int):
while ~u and ~v:
shf.propagate(u); shf.propagate(v)
if shf.V[v] < shf.V[u]: u, v = v, u
shf.st.append(u); shf.R[u], u = shf.L[u], shf.R[u]
u = u if ~u else v
while shf.st: shf.L[u := shf.st.pop()] = u
return u
def min(shf, i: int):
assert ~(root := shf.roots[i])
shf.propagate(root)
return shf.V[root]
def push(shf, i: int, x: _T):
shf.V[shf.id] = x
shf.roots[i] = shf.merge(shf.roots[i], shf.id)
shf.id += 1
def pop(shf, i: int) -> _T:
assert ~(root := shf.roots[i])
shf.propagate(root)
val, shf.roots[i] = shf.V[root], shf.merge(shf.L[root], shf.R[root])
return val
def add(shf, i: int, val: _T): shf.A[shf.roots[i]] = shf.op(shf.A[shf.roots[i]], val)
def empty(shf, i: int): return shf.roots[i] == -1