This documentation is automatically generated by online-judge-tools/verification-helper
import cp_library.__header__
import cp_library.alg.__header__
import cp_library.alg.iter.__header__
from cp_library.alg.iter.arg.argsort_ranged_fn import argsort_ranged
import cp_library.alg.iter.sort.__header__
def isort_ranged(*L: list, l: int, r: int, reverse=False):
n = r - l
order = argsort_ranged(L[0], l, r, reverse=reverse)
inv = [0] * n
# order contains indices in range [l, r), need to map to [0, n)
for i in range(n): inv[order[i]-l] = i
for i in range(n):
j = order[i] - l # j is in range [0, n)
for A in L: A[l+i], A[l+j] = A[l+j], A[l+i]
order[inv[i]], order[inv[j]] = order[inv[j]], order[inv[i]]
inv[i], inv[j] = inv[j], inv[i]
return L
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
def argsort_ranged(A: list[int], l: int, r: int, reverse=False):
P = Packer(r-l-1); I = [A[l+i] for i in range(r-l)]; P.ienumerate(I, reverse); I.sort()
for i in range(r-l): I[i] = (I[i] & P.m) + l
return I
class Packer:
__slots__ = 's', 'm'
def __init__(P, mx: int): P.s = mx.bit_length(); P.m = (1 << P.s) - 1
def enc(P, a: int, b: int): return a << P.s | b
def dec(P, x: int) -> tuple[int, int]: return x >> P.s, x & P.m
def enumerate(P, A, reverse=False): P.ienumerate(A:=list(A), reverse); return A
def ienumerate(P, A, reverse=False):
if reverse:
for i,a in enumerate(A): A[i] = P.enc(-a, i)
else:
for i,a in enumerate(A): A[i] = P.enc(a, i)
def indices(P, A: list[int]): P.iindices(A:=list(A)); return A
def iindices(P, A):
for i,a in enumerate(A): A[i] = P.m&a
def isort_ranged(*L: list, l: int, r: int, reverse=False):
n = r - l
order = argsort_ranged(L[0], l, r, reverse=reverse)
inv = [0] * n
# order contains indices in range [l, r), need to map to [0, n)
for i in range(n): inv[order[i]-l] = i
for i in range(n):
j = order[i] - l # j is in range [0, n)
for A in L: A[l+i], A[l+j] = A[l+j], A[l+i]
order[inv[i]], order[inv[j]] = order[inv[j]], order[inv[i]]
inv[i], inv[j] = inv[j], inv[i]
return L