This documentation is automatically generated by online-judge-tools/verification-helper
import cp_library.__header__
import cp_library.ds.__header__
import cp_library.ds.heap.__header__
class IntervalHeap:
def __init__(heap, x):
super().__init__()
heap._d = x
for i in range(len(x)): heap._up(0, i, i+1)
def push(heap, v):
heap._d.append(v)
heap._up(0, len(heap._d)-1, len(heap._d))
def pop_min(heap):
v = heap._d.pop()
if heap._d: v, heap._d[0] = heap._d[0], v; heap._up(0, heap._down(0), len(heap._d))
return v
def pop_max(heap):
v = heap._d.pop()
if len(heap._d) >= 2: v, heap._d[1] = heap._d[1], v; heap._up(1, heap._down(1), len(heap._d))
return v
def _up(heap, rt, k, n):
v = (d := heap._d)[k]
if k|1 < n and d[k|1] < d[k&~1]: d[k] = d[k^1]; k ^= 1
while rt <= (p := (k>>1)-1&~1) and v < d[p]: d[k], k = d[p], p
while rt <= (p := (k>>1)-1|1) and d[p] < v: d[k], k = d[p], p
d[k] = v
def _down(heap, k):
n, v = len(d := heap._d), d[k]
if k & 1: # max heap
c = 2*k+1
while c < n:
if c+2 < n and d[c] < d[c+2]: c += 2
if v < d[c]: d[k], k, c = d[c], c, 2*c+1
else: break
else: # min heap
c = 2*k+2
while c < n:
if c+2 < n and d[c+2] < d[c]: c += 2
if d[c] < v: d[k], k, c = d[c], c, 2*c+2
else: break
d[k] = v
return k
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
class IntervalHeap:
def __init__(heap, x):
super().__init__()
heap._d = x
for i in range(len(x)): heap._up(0, i, i+1)
def push(heap, v):
heap._d.append(v)
heap._up(0, len(heap._d)-1, len(heap._d))
def pop_min(heap):
v = heap._d.pop()
if heap._d: v, heap._d[0] = heap._d[0], v; heap._up(0, heap._down(0), len(heap._d))
return v
def pop_max(heap):
v = heap._d.pop()
if len(heap._d) >= 2: v, heap._d[1] = heap._d[1], v; heap._up(1, heap._down(1), len(heap._d))
return v
def _up(heap, rt, k, n):
v = (d := heap._d)[k]
if k|1 < n and d[k|1] < d[k&~1]: d[k] = d[k^1]; k ^= 1
while rt <= (p := (k>>1)-1&~1) and v < d[p]: d[k], k = d[p], p
while rt <= (p := (k>>1)-1|1) and d[p] < v: d[k], k = d[p], p
d[k] = v
def _down(heap, k):
n, v = len(d := heap._d), d[k]
if k & 1: # max heap
c = 2*k+1
while c < n:
if c+2 < n and d[c] < d[c+2]: c += 2
if v < d[c]: d[k], k, c = d[c], c, 2*c+1
else: break
else: # min heap
c = 2*k+2
while c < n:
if c+2 < n and d[c+2] < d[c]: c += 2
if d[c] < v: d[k], k, c = d[c], c, 2*c+2
else: break
d[k] = v
return k