This documentation is automatically generated by online-judge-tools/verification-helper
import cp_library.__header__
import cp_library.ds.__header__
import cp_library.ds.tree.__header__
# from harurun4635: https://judge.yosupo.jp/submission/268171
class LazySegTree:
def push(self, k):
# self.all_apply(2 * k, self.lazy[k])
self.data[2 * k] = self.mapping(self.lazy[k], self.data[2 * k])
if 2 * k < self.size:
self.lazy[2 * k] = self.composition(self.lazy[k], self.lazy[2 * k])
# self.all_apply(2 * k + 1, self.lazy[k])
self.data[2 * k + 1] = self.mapping(self.lazy[k], self.data[2 * k + 1])
if 2 * k < self.size:
self.lazy[2 * k + 1] = self.composition(self.lazy[k], self.lazy[2 * k + 1])
self.lazy[k] = self.id
def __init__(self, op, e, mapping, composition, id, lst):
self.n = len(lst)
self.log = (self.n - 1).bit_length()
self.size = 1 << self.log
self.data = [e] * (2 * self.size)
self.lazy = [id] * (2 * self.size)
self.e = e
self.op = op
self.mapping = mapping
self.composition = composition
self.id = id
for i in range(self.n):
self.data[self.size + i] = lst[i]
for i in range(self.size - 1, 0, -1):
# self.update(i)
self.data[i] = self.op(self.data[i << 1], self.data[(i << 1) | 1])
def set(self, p, x):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
self.data[p] = x
for i in range(1, self.log + 1):
# self.update(p >> i)
k = p >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
def get(self, p):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
return self.data[p]
def prod(self, l, r):
assert 0 <= l and l <= r and r <= self.n
if l == r:
return self.e
l += self.size
r += self.size
for i in range(self.log, 0, -1):
if ((l >> i) << i) != l:
self.push(l >> i)
if ((r >> i) << i) != r:
self.push(r >> i)
sml, smr = self.e, self.e
while l < r:
if l & 1:
sml = self.op(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.data[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def all_prod(self):
return self.data[1]
def apply_point(self, p, f):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
self.data[p] = self.mapping(f, self.data[p])
for i in range(1, self.log + 1):
# self.update(p >> i)
k = p >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
def apply(self, l, r, f):
assert 0 <= l and l <= r and r <= self.n
if l == r:
return
l += self.size
r += self.size
for i in range(self.log, 0, -1):
if ((l >> i) << i) != l:
self.push(l >> i)
if ((r >> i) << i) != r:
self.push((r - 1) >> i)
l2, r2 = l, r
while l < r:
if l & 1:
# self.all_apply(l, f)
self.data[l] = self.mapping(f, self.data[l])
if l < self.size:
self.lazy[l] = self.composition(f, self.lazy[l])
l += 1
if r & 1:
r -= 1
# self.all_apply(r, f)
self.data[r] = self.mapping(f, self.data[r])
if l < self.size:
self.lazy[r] = self.composition(f, self.lazy[r])
l >>= 1
r >>= 1
l, r = l2, r2
for i in range(1, self.log + 1):
if ((l >> i) << i) != l:
# self.update(l >> i)
k = l >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
if ((r >> i) << i) != r:
# self.update((r - 1) >> i)
k = (r - 1) >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
def max_right(self, l, g):
assert 0 <= l and l <= self.n
assert g(self.e)
if l == self.n:
return self.n
l += self.size
for i in range(self.log, 0, -1):
self.push(l >> i)
sm = self.e
while 1:
while l % 2 == 0:
l >>= 1
if not (g(self.op(sm, self.data[l]))):
while l < self.size:
self.push(l)
l = 2*l
if g(self.op(sm, self.data[l])):
sm = self.op(sm, self.data[l])
l += 1
return l - self.size
sm = self.op(sm, self.data[l])
l += 1
if (l&-l) == l: break
return self.n
def min_left(self, r, g):
assert 0 <= r and r <= self.n
assert g(self.e)
if r == 0: return 0
r += self.size
for i in range(self.log, 0, -1):
self.push((r - 1) >> i)
sm = self.e
while 1:
r -= 1
while r > 1 and (r % 2):
r >>= 1
if not (g(self.op(self.data[r], sm))):
while r < self.size:
self.push(r)
r = 2*r + 1
nsm = self.op(self.data[r], sm)
if g(nsm):
sm = nsm
r -= 1
return r + 1 - self.size
sm = self.op(self.data[r], sm)
if (r&-r) == r: break
return 0
def __str__(self):
return str([self.get(i) for i in range(self.n)])
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
# from harurun4635: https://judge.yosupo.jp/submission/268171
class LazySegTree:
def push(self, k):
# self.all_apply(2 * k, self.lazy[k])
self.data[2 * k] = self.mapping(self.lazy[k], self.data[2 * k])
if 2 * k < self.size:
self.lazy[2 * k] = self.composition(self.lazy[k], self.lazy[2 * k])
# self.all_apply(2 * k + 1, self.lazy[k])
self.data[2 * k + 1] = self.mapping(self.lazy[k], self.data[2 * k + 1])
if 2 * k < self.size:
self.lazy[2 * k + 1] = self.composition(self.lazy[k], self.lazy[2 * k + 1])
self.lazy[k] = self.id
def __init__(self, op, e, mapping, composition, id, lst):
self.n = len(lst)
self.log = (self.n - 1).bit_length()
self.size = 1 << self.log
self.data = [e] * (2 * self.size)
self.lazy = [id] * (2 * self.size)
self.e = e
self.op = op
self.mapping = mapping
self.composition = composition
self.id = id
for i in range(self.n):
self.data[self.size + i] = lst[i]
for i in range(self.size - 1, 0, -1):
# self.update(i)
self.data[i] = self.op(self.data[i << 1], self.data[(i << 1) | 1])
def set(self, p, x):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
self.data[p] = x
for i in range(1, self.log + 1):
# self.update(p >> i)
k = p >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
def get(self, p):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
return self.data[p]
def prod(self, l, r):
assert 0 <= l and l <= r and r <= self.n
if l == r:
return self.e
l += self.size
r += self.size
for i in range(self.log, 0, -1):
if ((l >> i) << i) != l:
self.push(l >> i)
if ((r >> i) << i) != r:
self.push(r >> i)
sml, smr = self.e, self.e
while l < r:
if l & 1:
sml = self.op(sml, self.data[l])
l += 1
if r & 1:
r -= 1
smr = self.op(self.data[r], smr)
l >>= 1
r >>= 1
return self.op(sml, smr)
def all_prod(self):
return self.data[1]
def apply_point(self, p, f):
assert 0 <= p and p < self.n
p += self.size
for i in range(self.log, 0, -1):
self.push(p >> i)
self.data[p] = self.mapping(f, self.data[p])
for i in range(1, self.log + 1):
# self.update(p >> i)
k = p >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
def apply(self, l, r, f):
assert 0 <= l and l <= r and r <= self.n
if l == r:
return
l += self.size
r += self.size
for i in range(self.log, 0, -1):
if ((l >> i) << i) != l:
self.push(l >> i)
if ((r >> i) << i) != r:
self.push((r - 1) >> i)
l2, r2 = l, r
while l < r:
if l & 1:
# self.all_apply(l, f)
self.data[l] = self.mapping(f, self.data[l])
if l < self.size:
self.lazy[l] = self.composition(f, self.lazy[l])
l += 1
if r & 1:
r -= 1
# self.all_apply(r, f)
self.data[r] = self.mapping(f, self.data[r])
if l < self.size:
self.lazy[r] = self.composition(f, self.lazy[r])
l >>= 1
r >>= 1
l, r = l2, r2
for i in range(1, self.log + 1):
if ((l >> i) << i) != l:
# self.update(l >> i)
k = l >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
if ((r >> i) << i) != r:
# self.update((r - 1) >> i)
k = (r - 1) >> i
self.data[k] = self.op(self.data[k << 1], self.data[(k << 1) | 1])
def max_right(self, l, g):
assert 0 <= l and l <= self.n
assert g(self.e)
if l == self.n:
return self.n
l += self.size
for i in range(self.log, 0, -1):
self.push(l >> i)
sm = self.e
while 1:
while l % 2 == 0:
l >>= 1
if not (g(self.op(sm, self.data[l]))):
while l < self.size:
self.push(l)
l = 2*l
if g(self.op(sm, self.data[l])):
sm = self.op(sm, self.data[l])
l += 1
return l - self.size
sm = self.op(sm, self.data[l])
l += 1
if (l&-l) == l: break
return self.n
def min_left(self, r, g):
assert 0 <= r and r <= self.n
assert g(self.e)
if r == 0: return 0
r += self.size
for i in range(self.log, 0, -1):
self.push((r - 1) >> i)
sm = self.e
while 1:
r -= 1
while r > 1 and (r % 2):
r >>= 1
if not (g(self.op(self.data[r], sm))):
while r < self.size:
self.push(r)
r = 2*r + 1
nsm = self.op(self.data[r], sm)
if g(nsm):
sm = nsm
r -= 1
return r + 1 - self.size
sm = self.op(self.data[r], sm)
if (r&-r) == r: break
return 0
def __str__(self):
return str([self.get(i) for i in range(self.n)])