This documentation is automatically generated by online-judge-tools/verification-helper
import cp_library.__header__
from cp_library.bit.popcnts_fn import popcnts
import cp_library.math.__header__
import cp_library.math.conv.__header__
from cp_library.math.conv.subset_zeta_pair_fn import subset_zeta_pair
from cp_library.math.conv.subset_mobius_fn import subset_mobius
def subset_conv(A,B,N):
assert len(A) == len(B)
Z = (N+1)*(M := 1<<N)
Ar,Br,Cr,P = [0]*Z, [0]*Z, [0]*Z, popcnts(N)
for i,p in enumerate(P): Ar[p<<N|i], Br[p<<N|i] = A[i], B[i]
subset_zeta_pair(Ar, Br, N)
for i in range(0,Z,M):
for j in range(0,Z-i,M):
ij = i+j
for k in range(M): Cr[ij|k] += Ar[i|k] * Br[j|k]
subset_mobius(Cr, N)
for i,p in enumerate(P): A[i] = Cr[p<<N|i]
return A
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
def popcnts(N):
P = [0]*(1 << N)
for i in range(N):
for m in range(b := 1<<i):
P[m^b] = P[m] + 1
return P
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
x₀ ────────●─●────────●───●────────●───────●────────► X₀
╳ ╲ ╱ ╲ ╱
x₄ ────────●─●────────●─╳─●────────●─╲───╱─●────────► X₁
╳ ╳ ╲ ╲ ╱ ╱
x₂ ────────●─●────────●─╳─●────────●─╲─╳─╱─●────────► X₂
╳ ╱ ╲ ╲ ╳ ╳ ╱
x₆ ────────●─●────────●───●────────●─╳─╳─╳─●────────► X₃
╳ ╳ ╳ ╳
x₁ ────────●─●────────●───●────────●─╳─╳─╳─●────────► X₄
╳ ╲ ╱ ╱ ╳ ╳ ╲
x₅ ────────●─●────────●─╳─●────────●─╱─╳─╲─●────────► X₅
╳ ╳ ╱ ╱ ╲ ╲
x₃ ────────●─●────────●─╳─●────────●─╱───╲─●────────► X₆
╳ ╱ ╲ ╱ ╲
x₇ ────────●─●────────●───●────────●───────●────────► X₇
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
Math - Convolution
'''
def subset_zeta_pair(A: list[int], B: list[int], N: int):
Z = len(A)
for i in range(N):
m = b = 1<<i
while m < Z:
A[m] += A[m^b]
B[m] += B[m^b]
m = m+1|b
return A, B
def subset_mobius(A: list[int], N: int):
Z = len(A)
for i in range(N):
m = b = 1<<i
while m < Z:
A[m] -= A[m^b]
m = m+1|b
return A
def subset_conv(A,B,N):
assert len(A) == len(B)
Z = (N+1)*(M := 1<<N)
Ar,Br,Cr,P = [0]*Z, [0]*Z, [0]*Z, popcnts(N)
for i,p in enumerate(P): Ar[p<<N|i], Br[p<<N|i] = A[i], B[i]
subset_zeta_pair(Ar, Br, N)
for i in range(0,Z,M):
for j in range(0,Z-i,M):
ij = i+j
for k in range(M): Cr[ij|k] += Ar[i|k] * Br[j|k]
subset_mobius(Cr, N)
for i,p in enumerate(P): A[i] = Cr[p<<N|i]
return A