This documentation is automatically generated by online-judge-tools/verification-helper
import cp_library.__header__
from typing import Container, Sequence
from numbers import Number
from cp_library.io.parser_cls import Parsable, Parser, TokenStream
import cp_library.math.__header__
import cp_library.math.linalg.__header__
from cp_library.math.linalg.elm_wise_in_place_mixin import ElmWiseInPlaceMixin
import cp_library.math.linalg.mat.__header__
class Mat(Parsable, Container, ElmWiseInPlaceMixin):
def __init__(self, flat, N, M):
self.data, self.N, self.M = flat, N, M
def elm_wise(self, other, op):
cls = type(self)
if isinstance(other, Number):
return cls([op(elm, other) for elm in self.data])
if isinstance(other, Sequence):
return cls([op(self.data[i], elm) for i, elm in enumerate(other)])
raise ValueError("Operand must be a number or a tuple of the same length")
def ielm_wise(self, other, op):
data = self.data
if isinstance(other, Number):
for i in range(len(data)):
data[i] = op(data[i], other)
elif isinstance(other, Sequence) and len(data) == len(other):
for i, elm in enumerate(other):
data[i] = op(data[i], elm)
else:
raise ValueError("Operand must be a number or a list of the same length")
return self
def __len__(self):
return self.N
def __getitem__(self, ij: tuple[int, int]):
i, j = ij
return self.data[i*self.M+j]
def __setitem__(self, ij: tuple[int, int], val: int):
i, j = ij
self.data[i*self.M+j] = val
def __contains__(self, x: int) -> bool:
return x in self.data
def __matmul__(A,B):
assert A.M == B.N, f"Dimension mismatch {A.M = } {B.N = }"
N,M = A.N, B.M
cls = type(A)
R = cls([0]*(M*N))
for irow in range(0,N*M,M):
for k in range(A.M):
krow, a = k*M, A.data[irow+k]
for j in range(M):
R.data[irow+j] = B.data[krow+j]*a + R.data[irow+j]
return R
def __pow__(A,K):
R = A.copy() if K & 1 else type(A).identity(A.N)
for i in range(1,K.bit_length()):
A = A @ A
if K >> i & 1:
R = R @ A
return R
@classmethod
def identity(cls, N):
data = [0]*(N*N)
for i in range(0,N*N,N+1): data[i] = 1
return cls(data)
def copy(self):
cls = type(self)
obj = cls.__new__(cls)
obj.N, obj.M, obj.data = self.N, self.M, self.data
return obj
@classmethod
def compile(cls, N: int, M: int, T: type = int):
elm, size = Parser.compile(T), N*M
def parse(ts: TokenStream):
return cls([elm(ts) for _ in range(size)])
return parse
def __repr__(self) -> str:
return '\n'.join(' '.join(str(elm) for elm in row) for row in self)
from cp_library.math.mod.mint_cls import mint
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
from typing import Container, Sequence
from numbers import Number
import typing
from collections import deque
from types import GenericAlias
from typing import Callable, Collection, Iterator, Union
import os
import sys
from io import BytesIO, IOBase
class FastIO(IOBase):
BUFSIZE = 8192
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
BUFSIZE = self.BUFSIZE
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
BUFSIZE = self.BUFSIZE
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
stdin: 'IOWrapper' = None
stdout: 'IOWrapper' = None
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
def write(self, s):
return self.buffer.write(s.encode("ascii"))
def read(self):
return self.buffer.read().decode("ascii")
def readline(self):
return self.buffer.readline().decode("ascii")
sys.stdin = IOWrapper.stdin = IOWrapper(sys.stdin)
sys.stdout = IOWrapper.stdout = IOWrapper(sys.stdout)
from typing import TypeVar
_T = TypeVar('T')
class TokenStream(Iterator):
stream = IOWrapper.stdin
def __init__(self):
self.queue = deque()
def __next__(self):
if not self.queue: self.queue.extend(self._line())
return self.queue.popleft()
def wait(self):
if not self.queue: self.queue.extend(self._line())
while self.queue: yield
def _line(self):
return TokenStream.stream.readline().split()
def line(self):
if self.queue:
A = list(self.queue)
self.queue.clear()
return A
return self._line()
TokenStream.default = TokenStream()
class CharStream(TokenStream):
def _line(self):
return TokenStream.stream.readline().rstrip()
CharStream.default = CharStream()
ParseFn = Callable[[TokenStream],_T]
class Parser:
def __init__(self, spec: Union[type[_T],_T]):
self.parse = Parser.compile(spec)
def __call__(self, ts: TokenStream) -> _T:
return self.parse(ts)
@staticmethod
def compile_type(cls: type[_T], args = ()) -> _T:
if issubclass(cls, Parsable):
return cls.compile(*args)
elif issubclass(cls, (Number, str)):
def parse(ts: TokenStream): return cls(next(ts))
return parse
elif issubclass(cls, tuple):
return Parser.compile_tuple(cls, args)
elif issubclass(cls, Collection):
return Parser.compile_collection(cls, args)
elif callable(cls):
def parse(ts: TokenStream):
return cls(next(ts))
return parse
else:
raise NotImplementedError()
@staticmethod
def compile(spec: Union[type[_T],_T]=int) -> ParseFn[_T]:
if isinstance(spec, (type, GenericAlias)):
cls = typing.get_origin(spec) or spec
args = typing.get_args(spec) or tuple()
return Parser.compile_type(cls, args)
elif isinstance(offset := spec, Number):
cls = type(spec)
def parse(ts: TokenStream): return cls(next(ts)) + offset
return parse
elif isinstance(args := spec, tuple):
return Parser.compile_tuple(type(spec), args)
elif isinstance(args := spec, Collection):
return Parser.compile_collection(type(spec), args)
elif isinstance(fn := spec, Callable):
def parse(ts: TokenStream): return fn(next(ts))
return parse
else:
raise NotImplementedError()
@staticmethod
def compile_line(cls: _T, spec=int) -> ParseFn[_T]:
if spec is int:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([int(token) for token in ts.line()])
return parse
else:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([fn(ts) for _ in ts.wait()])
return parse
@staticmethod
def compile_repeat(cls: _T, spec, N) -> ParseFn[_T]:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([fn(ts) for _ in range(N)])
return parse
@staticmethod
def compile_children(cls: _T, specs) -> ParseFn[_T]:
fns = tuple((Parser.compile(spec) for spec in specs))
def parse(ts: TokenStream): return cls([fn(ts) for fn in fns])
return parse
@staticmethod
def compile_tuple(cls: type[_T], specs) -> ParseFn[_T]:
if isinstance(specs, (tuple,list)) and len(specs) == 2 and specs[1] is ...:
return Parser.compile_line(cls, specs[0])
else:
return Parser.compile_children(cls, specs)
@staticmethod
def compile_collection(cls, specs):
if not specs or len(specs) == 1 or isinstance(specs, set):
return Parser.compile_line(cls, *specs)
elif (isinstance(specs, (tuple,list)) and len(specs) == 2 and isinstance(specs[1], int)):
return Parser.compile_repeat(cls, specs[0], specs[1])
else:
raise NotImplementedError()
class Parsable:
@classmethod
def compile(cls):
def parser(ts: TokenStream): return cls(next(ts))
return parser
import operator
from math import hypot
class ElmWiseMixin:
def elm_wise(self, other, op):
if isinstance(other, Number):
return type(self)(op(x, other) for x in self)
if isinstance(other, Sequence):
return type(self)(op(x, y) for x, y in zip(self, other))
raise ValueError("Operand must be a number or a tuple of the same length")
def __add__(self, other): return self.elm_wise(other, operator.add)
def __radd__(self, other): return self.elm_wise(other, operator.add)
def __sub__(self, other): return self.elm_wise(other, operator.sub)
def __rsub__(self, other): return self.elm_wise(other, lambda x,y: operator.sub(y,x))
def __mul__(self, other): return self.elm_wise(other, operator.mul)
def __rmul__(self, other): return self.elm_wise(other, operator.mul)
def __truediv__(self, other): return self.elm_wise(other, operator.truediv)
def __rtruediv__(self, other): return self.elm_wise(other, lambda x,y: operator.truediv(y,x))
def __floordiv__(self, other): return self.elm_wise(other, operator.floordiv)
def __rfloordiv__(self, other): return self.elm_wise(other, lambda x,y: operator.floordiv(y,x))
def __mod__(self, other): return self.elm_wise(other, operator.mod)
def distance(self: 'ElmWiseMixin', other: 'ElmWiseMixin'):
diff = other-self
return hypot(*diff)
def magnitude(vec: 'ElmWiseMixin'):
return hypot(*vec)
def norm(vec: 'ElmWiseMixin'):
return vec / vec.magnitude()
class ElmWiseInPlaceMixin(ElmWiseMixin):
def ielm_wise(self, other, op):
if isinstance(other, Number):
for i in range(len(self)):
self[i] = op(self[i], other)
elif isinstance(other, Sequence) and len(self) == len(other):
for i in range(len(self)):
self[i] = op(self[i], other[i])
else:
raise ValueError("Operand must be a number or a list of the same length")
return self
def __iadd__(self, other): return self.ielm_wise(other, operator.add)
def __isub__(self, other): return self.ielm_wise(other, operator.sub)
def __imul__(self, other): return self.ielm_wise(other, operator.mul)
def __itruediv__(self, other): return self.ielm_wise(other, operator.truediv)
def __ifloordiv__(self, other): return self.ielm_wise(other, operator.floordiv)
def __imod__(self, other): return self.ielm_wise(other, operator.mod)
class Mat(Parsable, Container, ElmWiseInPlaceMixin):
def __init__(self, flat, N, M):
self.data, self.N, self.M = flat, N, M
def elm_wise(self, other, op):
cls = type(self)
if isinstance(other, Number):
return cls([op(elm, other) for elm in self.data])
if isinstance(other, Sequence):
return cls([op(self.data[i], elm) for i, elm in enumerate(other)])
raise ValueError("Operand must be a number or a tuple of the same length")
def ielm_wise(self, other, op):
data = self.data
if isinstance(other, Number):
for i in range(len(data)):
data[i] = op(data[i], other)
elif isinstance(other, Sequence) and len(data) == len(other):
for i, elm in enumerate(other):
data[i] = op(data[i], elm)
else:
raise ValueError("Operand must be a number or a list of the same length")
return self
def __len__(self):
return self.N
def __getitem__(self, ij: tuple[int, int]):
i, j = ij
return self.data[i*self.M+j]
def __setitem__(self, ij: tuple[int, int], val: int):
i, j = ij
self.data[i*self.M+j] = val
def __contains__(self, x: int) -> bool:
return x in self.data
def __matmul__(A,B):
assert A.M == B.N, f"Dimension mismatch {A.M = } {B.N = }"
N,M = A.N, B.M
cls = type(A)
R = cls([0]*(M*N))
for irow in range(0,N*M,M):
for k in range(A.M):
krow, a = k*M, A.data[irow+k]
for j in range(M):
R.data[irow+j] = B.data[krow+j]*a + R.data[irow+j]
return R
def __pow__(A,K):
R = A.copy() if K & 1 else type(A).identity(A.N)
for i in range(1,K.bit_length()):
A = A @ A
if K >> i & 1:
R = R @ A
return R
@classmethod
def identity(cls, N):
data = [0]*(N*N)
for i in range(0,N*N,N+1): data[i] = 1
return cls(data)
def copy(self):
cls = type(self)
obj = cls.__new__(cls)
obj.N, obj.M, obj.data = self.N, self.M, self.data
return obj
@classmethod
def compile(cls, N: int, M: int, T: type = int):
elm, size = Parser.compile(T), N*M
def parse(ts: TokenStream):
return cls([elm(ts) for _ in range(size)])
return parse
def __repr__(self) -> str:
return '\n'.join(' '.join(str(elm) for elm in row) for row in self)
class mint(int):
mod: int
zero: 'mint'
one: 'mint'
two: 'mint'
cache: list['mint']
def __new__(cls, *args, **kwargs):
if 0<= (x := int(*args, **kwargs)) <= 2:
return cls.cache[x]
else:
return cls.fix(x)
@classmethod
def set_mod(cls, mod: int):
mint.mod = cls.mod = mod
mint.zero = cls.zero = cls.cast(0)
mint.one = cls.one = cls.fix(1)
mint.two = cls.two = cls.fix(2)
mint.cache = cls.cache = [cls.zero, cls.one, cls.two]
@classmethod
def fix(cls, x): return cls.cast(x%cls.mod)
@classmethod
def cast(cls, x): return super().__new__(cls,x)
@classmethod
def mod_inv(cls, x):
a,b,s,t = int(x), cls.mod, 1, 0
while b: a,b,s,t = b,a%b,t,s-a//b*t
if a == 1: return cls.fix(s)
raise ValueError(f"{x} is not invertible in mod {cls.mod}")
@property
def inv(self): return mint.mod_inv(self)
def __add__(self, x): return mint.fix(super().__add__(x))
def __radd__(self, x): return mint.fix(super().__radd__(x))
def __sub__(self, x): return mint.fix(super().__sub__(x))
def __rsub__(self, x): return mint.fix(super().__rsub__(x))
def __mul__(self, x): return mint.fix(super().__mul__(x))
def __rmul__(self, x): return mint.fix(super().__rmul__(x))
def __floordiv__(self, x): return self * mint.mod_inv(x)
def __rfloordiv__(self, x): return self.inv * x
def __truediv__(self, x): return self * mint.mod_inv(x)
def __rtruediv__(self, x): return self.inv * x
def __pow__(self, x):
return self.cast(super().__pow__(x, self.mod))
def __neg__(self): return mint.mod-self
def __pos__(self): return self
def __abs__(self): return self