This documentation is automatically generated by online-judge-tools/verification-helper
import cp_library.__header__
import cp_library.math.__header__
import cp_library.math.sps.__header__
import cp_library.math.sps.mod.__header__
from cp_library.math.sps.mod.sps_exp_small_fn import sps_exp_small
from cp_library.math.sps.mod.sps_exp_half_fn import sps_exp_half
def sps_exp_adaptive(P, mod): return sps_exp_half(P, mod) if len(P).bit_length() - 1 > 17 else sps_exp_small(P, mod)
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
def sps_exp_small(P, mod):
assert P[0] == 0
exp = [0]*(Z := 1<<(len(P).bit_length()-1)); exp[0] = 1
for i in range(1, Z):
fg, b, j = 0, 1 << (i.bit_length() - 1), i-1&i
while b <= j: fg += P[j]*exp[i^j]%mod; j = j-1&i
exp[i] = (P[i]+fg)%mod
return exp
def popcnts(N):
P = [0]*(1 << N)
for i in range(N):
for m in range(b := 1<<i):
P[m^b] = P[m] + 1
return P
from typing import Generic
from typing import TypeVar
_S = TypeVar('S'); _T = TypeVar('T'); _U = TypeVar('U'); _T1 = TypeVar('T1'); _T2 = TypeVar('T2'); _T3 = TypeVar('T3'); _T4 = TypeVar('T4'); _T5 = TypeVar('T5'); _T6 = TypeVar('T6')
import sys
def list_find(lst: list, value, start = 0, stop = sys.maxsize):
try:
return lst.index(value, start, stop)
except:
return -1
class view(Generic[_T]):
__slots__ = 'A', 'l', 'r'
def __init__(V, A: list[_T], l: int = 0, r: int = 0): V.A, V.l, V.r = A, l, r
def __len__(V): return V.r - V.l
def __getitem__(V, i: int):
if 0 <= i < V.r - V.l: return V.A[V.l+i]
else: raise IndexError
def __setitem__(V, i: int, v: _T): V.A[V.l+i] = v
def __contains__(V, v: _T): return list_find(V.A, v, V.l, V.r) != -1
def set_range(V, l: int, r: int): V.l, V.r = l, r
def index(V, v: _T): return V.A.index(v, V.l, V.r) - V.l
def reverse(V):
l, r = V.l, V.r-1
while l < r: V.A[l], V.A[r] = V.A[r], V.A[l]; l += 1; r -= 1
def sort(V, /, *args, **kwargs):
A = V.A[V.l:V.r]; A.sort(*args, **kwargs)
for i,a in enumerate(A,V.l): V.A[i] = a
def pop(V): V.r -= 1; return V.A[V.r]
def append(V, v: _T): V.A[V.r] = v; V.r += 1
def popleft(V): V.l += 1; return V.A[V.l-1]
def appendleft(V, v: _T): V.l -= 1; V.A[V.l] = v;
def validate(V): return 0 <= V.l <= V.r <= len(V.A)
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
x₀ ────────●─●────────●───●────────●───────●────────► X₀
╳ ╲ ╱ ╲ ╱
x₄ ────────●─●────────●─╳─●────────●─╲───╱─●────────► X₁
╳ ╳ ╲ ╲ ╱ ╱
x₂ ────────●─●────────●─╳─●────────●─╲─╳─╱─●────────► X₂
╳ ╱ ╲ ╲ ╳ ╳ ╱
x₆ ────────●─●────────●───●────────●─╳─╳─╳─●────────► X₃
╳ ╳ ╳ ╳
x₁ ────────●─●────────●───●────────●─╳─╳─╳─●────────► X₄
╳ ╲ ╱ ╱ ╳ ╳ ╲
x₅ ────────●─●────────●─╳─●────────●─╱─╳─╲─●────────► X₅
╳ ╳ ╱ ╱ ╲ ╲
x₃ ────────●─●────────●─╳─●────────●─╱───╲─●────────► X₆
╳ ╱ ╲ ╱ ╲
x₇ ────────●─●────────●───●────────●───────●────────► X₇
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
Math - Convolution
'''
def ior_zeta(A: list[int], N: int, Z: int = None):
Z = Z if Z else len(A)
for i in range(N):
m = b = 1<<i
while m < Z: A[m] += A[m^b]; m = m+1|b
return A
def isubset_conv_half(Ar: list[int], B: list[int], n: int, N: int, mod: int, pcnt) -> list[int]:
Br = [0]*(z := (n+1)*(m := 1<<n))
for i in range(m): Br[pcnt[i]<<n|i] = B[i]
ior_zeta(Br, n)
for i in range(z): Br[i] = Br[i]%mod
for ij in range(n,-1,-1):
ij_, i_ = (ij+1)<<N|m, ij<<n
for k in range(m): Ar[ij_|k] = (Br[i_|k] * Ar[k]) % mod
for i in range(ij):
j = ij-i; i_, j_ = i<<n, j<<N
for k in range(m): Ar[ij_|k] = (Ar[ij_|k] + Br[i_|k] * Ar[j_|k]) % mod
for i in range(n+1):
i = i << N
for k in range(m): Ar[i|k|m] += Ar[i|k]
def ior_mobius(A: list[int], N: int, Z: int = None):
Z = Z if Z else len(A)
for i in range(N):
m = b = 1<<i
while m < Z: A[m] -= A[m^b]; m = m+1|b
return A
def sps_exp_half(P, mod):
assert P[0] == 0
N = len(P).bit_length() - 1
Z = (N+1)*(M := 1<<N)
exp = [0]*Z; exp[0] = 1
pcnt = popcnts(N)
P = view(P); m = 1
for n in range(N):
P.set_range(m, m := m<<1)
isubset_conv_half(exp, P, n, N, mod, pcnt)
ior_mobius(exp, N)
return [exp[p<<N|i] % mod for i,p in enumerate(pcnt)]
def sps_exp_adaptive(P, mod): return sps_exp_half(P, mod) if len(P).bit_length() - 1 > 17 else sps_exp_small(P, mod)