This documentation is automatically generated by online-judge-tools/verification-helper
import cp_library.__header__
import cp_library.math.__header__
import cp_library.math.sps.__header__
import cp_library.math.sps.mod.__header__
from cp_library.math.sps.mod.sps_ln_small_fn import sps_ln_small
from cp_library.math.sps.mod.sps_ln_fn import sps_ln
def sps_ln_adaptive(P, mod): return sps_ln(P, mod) if len(P).bit_length()-1 > 17 else sps_ln_small(P, mod)
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
def sps_ln_small(P, mod):
assert P[0] == 1
ln = [0]*(Z:=1<<(N:=len(P).bit_length()-1))
for i in range(1, Z):
fg, b, j = 0, 1<<(i.bit_length()-1), i-1&i
while b <= j: fg += ln[j]*P[i^j]%mod; j = j-1&i
ln[i] = (P[i]-fg)%mod
return ln
def elist(hint: int) -> list: ...
try:
from __pypy__ import newlist_hint
except:
def newlist_hint(hint): return []
elist = newlist_hint
from typing import Generic
from typing import TypeVar
_S = TypeVar('S'); _T = TypeVar('T'); _U = TypeVar('U'); _T1 = TypeVar('T1'); _T2 = TypeVar('T2'); _T3 = TypeVar('T3'); _T4 = TypeVar('T4'); _T5 = TypeVar('T5'); _T6 = TypeVar('T6')
import sys
def list_find(lst: list, value, start = 0, stop = sys.maxsize):
try:
return lst.index(value, start, stop)
except:
return -1
class view(Generic[_T]):
__slots__ = 'A', 'l', 'r'
def __init__(V, A: list[_T], l: int = 0, r: int = 0): V.A, V.l, V.r = A, l, r
def __len__(V): return V.r - V.l
def __getitem__(V, i: int):
if 0 <= i < V.r - V.l: return V.A[V.l+i]
else: raise IndexError
def __setitem__(V, i: int, v: _T): V.A[V.l+i] = v
def __contains__(V, v: _T): return list_find(V.A, v, V.l, V.r) != -1
def set_range(V, l: int, r: int): V.l, V.r = l, r
def index(V, v: _T): return V.A.index(v, V.l, V.r) - V.l
def reverse(V):
l, r = V.l, V.r-1
while l < r: V.A[l], V.A[r] = V.A[r], V.A[l]; l += 1; r -= 1
def sort(V, /, *args, **kwargs):
A = V.A[V.l:V.r]; A.sort(*args, **kwargs)
for i,a in enumerate(A,V.l): V.A[i] = a
def pop(V): V.r -= 1; return V.A[V.r]
def append(V, v: _T): V.A[V.r] = v; V.r += 1
def popleft(V): V.l += 1; return V.A[V.l-1]
def appendleft(V, v: _T): V.l -= 1; V.A[V.l] = v;
def validate(V): return 0 <= V.l <= V.r <= len(V.A)
def popcnts(N):
P = [0]*(1 << N)
for i in range(N):
for m in range(b := 1<<i):
P[m^b] = P[m] + 1
return P
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
x₀ ────────●─●────────●───●────────●───────●────────► X₀
╳ ╲ ╱ ╲ ╱
x₄ ────────●─●────────●─╳─●────────●─╲───╱─●────────► X₁
╳ ╳ ╲ ╲ ╱ ╱
x₂ ────────●─●────────●─╳─●────────●─╲─╳─╱─●────────► X₂
╳ ╱ ╲ ╲ ╳ ╳ ╱
x₆ ────────●─●────────●───●────────●─╳─╳─╳─●────────► X₃
╳ ╳ ╳ ╳
x₁ ────────●─●────────●───●────────●─╳─╳─╳─●────────► X₄
╳ ╲ ╱ ╱ ╳ ╳ ╲
x₅ ────────●─●────────●─╳─●────────●─╱─╳─╲─●────────► X₅
╳ ╳ ╱ ╱ ╲ ╲
x₃ ────────●─●────────●─╳─●────────●─╱───╲─●────────► X₆
╳ ╱ ╲ ╱ ╲
x₇ ────────●─●────────●───●────────●───────●────────► X₇
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
Math - Convolution
'''
def ior_zeta_pair_ranked(A, B, N, M, Z):
for i in range(0, Z, M):
l, r = i+(1<<(i>>N))-1, i+M
for j in range(N):
m = l|(b := 1<<j)
while m < r: A[m] += A[m^b]; B[m] += B[m^b]; m = m+1|b
return A, B
def ior_mobius_ranked(A: list[int], N: int, M: int, Z: int):
for i in range(0, Z, M):
l, r = i, i+M-(1<<(N-(i>>N)))+1
for j in range(N):
m = l|(b := 1<<j)
while m < r: A[m] -= A[m^b]; m = m+1|b
return A
def isubset_deconv_ranked(Ar, Br, N, Z, M, mod):
inv = pow(Br[0], -1, mod); ior_zeta_pair_ranked(Ar, Br, N, M, Z)
for i in range(Z): Br[i], Ar[i] = Br[i]%mod, Ar[i]%mod
for i in range(0, Z, M):
for k in range(M): Ar[i|k] = Ar[i|k] * inv % mod
for j in range(M, Z-i, M):
ij = i + j; l = (1 << (j>>N))-1
for k in range(l,M): Ar[ij|k] -= Ar[i|k] * Br[j|k] % mod
return ior_mobius_ranked(Ar, N, M, Z)
def subset_deconv(A: list[int], B: list[int], N: int, mod: int) -> list[int]:
Z = (N+1)*(M:=1<<N)
Ar, Br, C, P = [0]*Z, [0]*Z, [0]*M, popcnts(N)
for i, p in enumerate(P): Ar[p<<N|i], Br[p<<N|i] = A[i], B[i]
isubset_deconv_ranked(Ar, Br, N, Z, M, mod)
for i, p in enumerate(P): C[i] = Ar[p<<N|i] % mod
return C
def sps_ln(P, mod):
assert P[0] == 1
N = len(P).bit_length()-1; P0, P1 = view(P), view(P); m = 1; ln = elist(1 << N); ln.append(0)
for n in range(N): P0.set_range(0, m); P1.set_range(m, m := m<<1); ln.extend(subset_deconv(P1, P0, n, mod))
return ln
def sps_ln_adaptive(P, mod): return sps_ln(P, mod) if len(P).bit_length()-1 > 17 else sps_ln_small(P, mod)