This documentation is automatically generated by online-judge-tools/verification-helper
import cp_library.__header__
"""
Benchmark registry implementation following Single Responsibility Principle.
"""
from typing import Callable, Dict, List, Union
import cp_library.perf.__header__
from cp_library.perf.interfaces import BenchmarkRegistry, DataGenerator, ResultValidator
class DefaultResultValidator(ResultValidator):
"""Default validator that uses equality comparison"""
def validate(self, expected, actual) -> bool:
return expected == actual
class FunctionDataGenerator(DataGenerator):
"""Adapter to wrap function-based data generators"""
def __init__(self, func: Callable):
self.func = func
def generate(self, size: int, operation: str):
return self.func(size, operation)
class BenchmarkRegistryImpl(BenchmarkRegistry):
"""Implementation of benchmark component registry"""
def __init__(self):
self.implementations: Dict[str, Dict[str, Callable]] = {}
self.data_generators: Dict[str, DataGenerator] = {}
self.validators: Dict[str, ResultValidator] = {}
self.setups: Dict[str, Dict[str, Callable]] = {}
# Register default validator
self.default_validator = DefaultResultValidator()
def register_implementation(self, name: str, func: Callable, operations: List[str]) -> None:
"""Register a benchmark implementation"""
for op in operations:
if op not in self.implementations:
self.implementations[op] = {}
self.implementations[op][name] = func
def register_data_generator(self, name: str, generator: DataGenerator) -> None:
"""Register a data generator"""
self.data_generators[name] = generator
def register_validator(self, operation: str, validator: ResultValidator) -> None:
"""Register a result validator"""
self.validators[operation] = validator
def register_setup(self, name: str, setup_func: Callable, operations: List[str]) -> None:
"""Register a setup function"""
for op in operations:
if op not in self.setups:
self.setups[op] = {}
self.setups[op][name] = setup_func
def get_implementations(self, operation: str) -> Dict[str, Callable]:
"""Get implementations for an operation"""
return self.implementations.get(operation, {})
def get_data_generator(self, operation: str) -> DataGenerator:
"""Get data generator for an operation"""
return self.data_generators.get(operation, self.data_generators.get('default'))
def get_validator(self, operation: str) -> ResultValidator:
"""Get validator for an operation"""
return self.validators.get(operation, self.default_validator)
def get_setup(self, operation: str, implementation: str) -> Callable:
"""Get setup function for operation and implementation"""
return self.setups.get(operation, {}).get(implementation)
# Decorator methods for backward compatibility
def data_generator(self, name: str = "default"):
"""Decorator to register data generator function"""
def decorator(func):
generator = FunctionDataGenerator(func)
self.register_data_generator(name, generator)
return func
return decorator
def implementation(self, name: str, operations: Union[str, List[str]] = None):
"""Decorator to register implementation function"""
if operations is None:
operations = ['default']
elif isinstance(operations, str):
operations = [operations]
def decorator(func):
self.register_implementation(name, func, operations)
return func
return decorator
def validator(self, operation: str = "default"):
"""Decorator to register custom validator function"""
def decorator(func):
class FunctionValidator(ResultValidator):
def validate(self, expected, actual) -> bool:
return func(expected, actual)
self.register_validator(operation, FunctionValidator())
return func
return decorator
def setup(self, name: str, operations: Union[str, List[str]] = None):
"""Decorator to register setup function"""
if operations is None:
operations = ['default']
elif isinstance(operations, str):
operations = [operations]
def decorator(func):
self.register_setup(name, func, operations)
return func
return decorator
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
"""
Benchmark registry implementation following Single Responsibility Principle.
"""
from typing import Callable, Dict, List, Union
"""
Interfaces for the benchmark framework following SOLID principles.
"""
from abc import ABC, abstractmethod
from typing import Any, Callable, Dict, List, Optional, Union
from dataclasses import dataclass
@dataclass
class BenchmarkResult:
"""Immutable benchmark result value object"""
operation: str
size: int
implementation: str
time_ms: float
correct: bool
error: Optional[str] = None
class TimerInterface(ABC):
"""Interface for timing implementations"""
@abstractmethod
def measure_time(self, func: Callable, data: Any, setup_func: Callable = None) -> tuple[Any, float]:
"""Measure execution time of a function"""
pass
class PlotRenderer(ABC):
"""Interface for plot rendering implementations"""
@abstractmethod
def can_render(self) -> bool:
"""Check if this renderer is available"""
pass
@abstractmethod
def create_plots(self, results: List[BenchmarkResult], config: Any) -> None:
"""Create plots from benchmark results"""
pass
class ResultValidator(ABC):
"""Interface for result validation strategies"""
@abstractmethod
def validate(self, expected: Any, actual: Any) -> bool:
"""Validate benchmark result"""
pass
class DataGenerator(ABC):
"""Interface for data generation strategies"""
@abstractmethod
def generate(self, size: int, operation: str) -> Any:
"""Generate test data for given size and operation"""
pass
class OutputManager(ABC):
"""Interface for output management"""
@abstractmethod
def save_results(self, results: List[BenchmarkResult], config: Any) -> None:
"""Save benchmark results"""
pass
class BenchmarkRegistry(ABC):
"""Interface for benchmark component registration"""
@abstractmethod
def register_implementation(self, name: str, func: Callable, operations: List[str]) -> None:
"""Register a benchmark implementation"""
pass
@abstractmethod
def register_data_generator(self, name: str, generator: DataGenerator) -> None:
"""Register a data generator"""
pass
@abstractmethod
def register_validator(self, operation: str, validator: ResultValidator) -> None:
"""Register a result validator"""
pass
@abstractmethod
def register_setup(self, name: str, setup_func: Callable, operations: List[str]) -> None:
"""Register a setup function"""
pass
class BenchmarkOrchestrator(ABC):
"""Interface for benchmark execution orchestration"""
@abstractmethod
def run_benchmarks(self, operations: List[str], sizes: List[int]) -> List[BenchmarkResult]:
"""Execute benchmarks and return results"""
pass
class DefaultResultValidator(ResultValidator):
"""Default validator that uses equality comparison"""
def validate(self, expected, actual) -> bool:
return expected == actual
class FunctionDataGenerator(DataGenerator):
"""Adapter to wrap function-based data generators"""
def __init__(self, func: Callable):
self.func = func
def generate(self, size: int, operation: str):
return self.func(size, operation)
class BenchmarkRegistryImpl(BenchmarkRegistry):
"""Implementation of benchmark component registry"""
def __init__(self):
self.implementations: Dict[str, Dict[str, Callable]] = {}
self.data_generators: Dict[str, DataGenerator] = {}
self.validators: Dict[str, ResultValidator] = {}
self.setups: Dict[str, Dict[str, Callable]] = {}
# Register default validator
self.default_validator = DefaultResultValidator()
def register_implementation(self, name: str, func: Callable, operations: List[str]) -> None:
"""Register a benchmark implementation"""
for op in operations:
if op not in self.implementations:
self.implementations[op] = {}
self.implementations[op][name] = func
def register_data_generator(self, name: str, generator: DataGenerator) -> None:
"""Register a data generator"""
self.data_generators[name] = generator
def register_validator(self, operation: str, validator: ResultValidator) -> None:
"""Register a result validator"""
self.validators[operation] = validator
def register_setup(self, name: str, setup_func: Callable, operations: List[str]) -> None:
"""Register a setup function"""
for op in operations:
if op not in self.setups:
self.setups[op] = {}
self.setups[op][name] = setup_func
def get_implementations(self, operation: str) -> Dict[str, Callable]:
"""Get implementations for an operation"""
return self.implementations.get(operation, {})
def get_data_generator(self, operation: str) -> DataGenerator:
"""Get data generator for an operation"""
return self.data_generators.get(operation, self.data_generators.get('default'))
def get_validator(self, operation: str) -> ResultValidator:
"""Get validator for an operation"""
return self.validators.get(operation, self.default_validator)
def get_setup(self, operation: str, implementation: str) -> Callable:
"""Get setup function for operation and implementation"""
return self.setups.get(operation, {}).get(implementation)
# Decorator methods for backward compatibility
def data_generator(self, name: str = "default"):
"""Decorator to register data generator function"""
def decorator(func):
generator = FunctionDataGenerator(func)
self.register_data_generator(name, generator)
return func
return decorator
def implementation(self, name: str, operations: Union[str, List[str]] = None):
"""Decorator to register implementation function"""
if operations is None:
operations = ['default']
elif isinstance(operations, str):
operations = [operations]
def decorator(func):
self.register_implementation(name, func, operations)
return func
return decorator
def validator(self, operation: str = "default"):
"""Decorator to register custom validator function"""
def decorator(func):
class FunctionValidator(ResultValidator):
def validate(self, expected, actual) -> bool:
return func(expected, actual)
self.register_validator(operation, FunctionValidator())
return func
return decorator
def setup(self, name: str, operations: Union[str, List[str]] = None):
"""Decorator to register setup function"""
if operations is None:
operations = ['default']
elif isinstance(operations, str):
operations = [operations]
def decorator(func):
self.register_setup(name, func, operations)
return func
return decorator