This documentation is automatically generated by online-judge-tools/verification-helper
# verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_C
def main():
N, = read()
pts = [read() for _ in range(N)]
kdtree = KDTree(pts)
Q, = read()
for _ in range(Q):
sx,tx,sy,ty = read()
tx += 1
ty += 1
ans = sorted(kdtree[sx:tx,sy:ty]) + ['']
print(*ans, sep='\n')
from cp_library.ds.kdtree_cls import KDTree
from cp_library.io.read_int_fn import read
if __name__ == '__main__':
main()
# verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_C
def main():
N, = read()
pts = [read() for _ in range(N)]
kdtree = KDTree(pts)
Q, = read()
for _ in range(Q):
sx,tx,sy,ty = read()
tx += 1
ty += 1
ans = sorted(kdtree[sx:tx,sy:ty]) + ['']
print(*ans, sep='\n')
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
import typing
import random
class KDTreeNode:
__slots__ = ['id', 'point', 'children']
def __init__(self, id, point, children):
self.id = id
self.point = point
self.children = children
class KDTree:
__slots__ = ['k', 'nodes', 'root']
def __init__(self, points):
self.k = len(points[0])
self.build_tree(points)
def median_of_three(self, l, r, axis):
m = (l + r) // 2
a, b, c = self.nodes[l].point[axis], self.nodes[m].point[axis], self.nodes[r].point[axis]
if a <= b <= c or c <= b <= a:
return m
if b <= a <= c or c <= a <= b:
return l
return r
def partition(self, l, r, axis, pi):
nodes = self.nodes
nodes[pi], nodes[r] = nodes[r], nodes[pi]
pi = l
pivot = nodes[r].point[axis]
for j in range(l, r):
v = nodes[j].point[axis]
if v < pivot or (v == pivot and j&1):
nodes[pi], nodes[j] = nodes[j], nodes[pi]
pi += 1
nodes[pi], nodes[r] = nodes[r], nodes[pi]
return pi
def build_tree(self, points):
self.nodes = [KDTreeNode(id, point, [None,None]) for id,point in enumerate(points)]
root = KDTreeNode(-1, None, [None])
stack = [(0, len(points)-1, 0, root, 0)]
while stack:
l, r, depth, parent, child = stack.pop()
axis = depth % self.k
pi = self.partition(l,r,axis, random.randint(l, r))
parent.children[child] = self.nodes[pi]
if pi < r:
stack.append((pi + 1, r, depth+1, self.nodes[pi], 1))
if l < pi:
stack.append((l, pi - 1, depth+1, self.nodes[pi], 0))
self.root = root.children[0]
def __getitem__(self, ranges: typing.Tuple[slice]):
result = []
stack = [(self.root, 0)]
while stack:
node, depth = stack.pop()
axis = depth % self.k
# Check if the current point is within the range
if all(ranges[i].start <= node.point[i] < ranges[i].stop for i in range(self.k)):
result.append(node.id)
# Check right subtree if necessary
if node.children[1] and node.point[axis] < ranges[axis].stop:
stack.append((node.children[1], depth + 1))
# Check left subtree if necessary
if node.children[0] and ranges[axis].start <= node.point[axis]:
stack.append((node.children[0], depth + 1))
return result
def read(shift=0, base=10):
return [int(s, base) + shift for s in input().split()]
if __name__ == '__main__':
main()