This documentation is automatically generated by online-judge-tools/verification-helper
# verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/2/GRL_2_B
def main():
N, M, root = read((0, ...))
E = read_edges(M, 0)
MCA = edmonds_branching(E, N, root)
ans = sum(w for *_,w in MCA)
write(ans)
from cp_library.io.read_fn import read
from cp_library.io.write_fn import write
from cp_library.io.read_edges_weighted_fn import read_edges
from cp_library.alg.graph.edmonds_fn import edmonds_branching
if __name__ == '__main__':
main()
# verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/2/GRL_2_B
def main():
N, M, root = read((0, ...))
E = read_edges(M, 0)
MCA = edmonds_branching(E, N, root)
ans = sum(w for *_,w in MCA)
write(ans)
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
from typing import Iterable, Type, Union, overload
import typing
from collections import deque
from numbers import Number
from types import GenericAlias
from typing import Callable, Collection, Iterator, Union
import os
import sys
from io import BytesIO, IOBase
class FastIO(IOBase):
BUFSIZE = 8192
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
BUFSIZE = self.BUFSIZE
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
BUFSIZE = self.BUFSIZE
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
stdin: 'IOWrapper' = None
stdout: 'IOWrapper' = None
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
def write(self, s):
return self.buffer.write(s.encode("ascii"))
def read(self):
return self.buffer.read().decode("ascii")
def readline(self):
return self.buffer.readline().decode("ascii")
sys.stdin = IOWrapper.stdin = IOWrapper(sys.stdin)
sys.stdout = IOWrapper.stdout = IOWrapper(sys.stdout)
from typing import TypeVar
_T = TypeVar('T')
class TokenStream(Iterator):
stream = IOWrapper.stdin
def __init__(self):
self.queue = deque()
def __next__(self):
if not self.queue: self.queue.extend(self._line())
return self.queue.popleft()
def wait(self):
if not self.queue: self.queue.extend(self._line())
while self.queue: yield
def _line(self):
return TokenStream.stream.readline().split()
def line(self):
if self.queue:
A = list(self.queue)
self.queue.clear()
return A
return self._line()
TokenStream.default = TokenStream()
class CharStream(TokenStream):
def _line(self):
return TokenStream.stream.readline().rstrip()
CharStream.default = CharStream()
ParseFn = Callable[[TokenStream],_T]
class Parser:
def __init__(self, spec: Union[type[_T],_T]):
self.parse = Parser.compile(spec)
def __call__(self, ts: TokenStream) -> _T:
return self.parse(ts)
@staticmethod
def compile_type(cls: type[_T], args = ()) -> _T:
if issubclass(cls, Parsable):
return cls.compile(*args)
elif issubclass(cls, (Number, str)):
def parse(ts: TokenStream): return cls(next(ts))
return parse
elif issubclass(cls, tuple):
return Parser.compile_tuple(cls, args)
elif issubclass(cls, Collection):
return Parser.compile_collection(cls, args)
elif callable(cls):
def parse(ts: TokenStream):
return cls(next(ts))
return parse
else:
raise NotImplementedError()
@staticmethod
def compile(spec: Union[type[_T],_T]=int) -> ParseFn[_T]:
if isinstance(spec, (type, GenericAlias)):
cls = typing.get_origin(spec) or spec
args = typing.get_args(spec) or tuple()
return Parser.compile_type(cls, args)
elif isinstance(offset := spec, Number):
cls = type(spec)
def parse(ts: TokenStream): return cls(next(ts)) + offset
return parse
elif isinstance(args := spec, tuple):
return Parser.compile_tuple(type(spec), args)
elif isinstance(args := spec, Collection):
return Parser.compile_collection(type(spec), args)
elif isinstance(fn := spec, Callable):
def parse(ts: TokenStream): return fn(next(ts))
return parse
else:
raise NotImplementedError()
@staticmethod
def compile_line(cls: _T, spec=int) -> ParseFn[_T]:
if spec is int:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([int(token) for token in ts.line()])
return parse
else:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([fn(ts) for _ in ts.wait()])
return parse
@staticmethod
def compile_repeat(cls: _T, spec, N) -> ParseFn[_T]:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([fn(ts) for _ in range(N)])
return parse
@staticmethod
def compile_children(cls: _T, specs) -> ParseFn[_T]:
fns = tuple((Parser.compile(spec) for spec in specs))
def parse(ts: TokenStream): return cls([fn(ts) for fn in fns])
return parse
@staticmethod
def compile_tuple(cls: type[_T], specs) -> ParseFn[_T]:
if isinstance(specs, (tuple,list)) and len(specs) == 2 and specs[1] is ...:
return Parser.compile_line(cls, specs[0])
else:
return Parser.compile_children(cls, specs)
@staticmethod
def compile_collection(cls, specs):
if not specs or len(specs) == 1 or isinstance(specs, set):
return Parser.compile_line(cls, *specs)
elif (isinstance(specs, (tuple,list)) and len(specs) == 2 and isinstance(specs[1], int)):
return Parser.compile_repeat(cls, specs[0], specs[1])
else:
raise NotImplementedError()
class Parsable:
@classmethod
def compile(cls):
def parser(ts: TokenStream): return cls(next(ts))
return parser
@overload
def read() -> Iterable[int]: ...
@overload
def read(spec: int) -> list[int]: ...
@overload
def read(spec: Union[Type[_T],_T], char=False) -> _T: ...
def read(spec: Union[Type[_T],_T] = None, char=False):
if not char and spec is None: return map(int, TokenStream.default.line())
parser: _T = Parser.compile(spec)
return parser(CharStream.default if char else TokenStream.default)
def write(*args, **kwargs):
'''Prints the values to a stream, or to stdout_fast by default.'''
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", IOWrapper.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
class Edge(tuple, Parsable):
@classmethod
def compile(cls, I=-1):
def parse(ts: TokenStream):
u,v = ts.line()
return cls((int(u)+I,int(v)+I))
return parse
E = TypeVar('E', bound=Edge)
M = TypeVar('M', bound=int)
class EdgeCollection(Parsable):
@classmethod
def compile(cls, M: M, E: E = Edge[-1]):
if isinstance(I := E, int):
E = Edge[I]
edge = Parser.compile(E)
def parse(ts: TokenStream):
return cls(edge(ts) for _ in range(M))
return parse
class EdgeList(EdgeCollection, list[E]):
pass
class EdgeSet(EdgeCollection, set[E]):
pass
from functools import total_ordering
@total_ordering
class EdgeWeighted(Edge):
def __lt__(self, other: tuple) -> bool:
a = self[2],self[0],self[1]
b = other[2],other[0],other[1]
return a < b
@classmethod
def compile(cls, I=-1):
def parse(ts: TokenStream):
u,v,w = ts.line()
return cls((int(u)+I, int(v)+I, int(w)))
return parse
M = TypeVar('M', bound=int)
Ew = TypeVar('Ew', bound=EdgeWeighted)
class EdgeCollectionWeighted(EdgeCollection):
@classmethod
def compile(cls, M: M, Ew: Ew = EdgeWeighted[-1]):
if isinstance(I := Ew, int):
Ew = EdgeWeighted[I]
return super().compile(M, Ew)
class EdgeListWeighted(EdgeCollectionWeighted, list[Ew]):
pass
class EdgeSetWeighted(EdgeCollectionWeighted, set[Ew]):
pass
def read_edges(M, I=-1):
return read(EdgeListWeighted[M,I])
from functools import reduce
from heapq import heapify
sys.setrecursionlimit(10**6)
import pypyjit
pypyjit.set_param("max_unroll_recursion=-1")
from typing import Sequence
class CSRIncremental(Sequence[list[_T]]):
def __init__(csr, sizes: list[int]):
csr.L, N = [0]*len(sizes), 0
for i,sz in enumerate(sizes):
csr.L[i] = N; N += sz
csr.R, csr.A = csr.L[:], [0]*N
def append(csr, i: int, x: _T):
csr.A[csr.R[i]] = x; csr.R[i] += 1
def __iter__(csr):
for i,l in enumerate(csr.L):
yield csr.A[l:csr.R[i]]
def __getitem__(csr, i: int) -> _T:
return csr.A[i]
def __len__(dsu):
return len(dsu.L)
def range(csr, i: int) -> _T:
return range(csr.L[i], csr.R[i])
class DSU(Parsable, Collection):
def __init__(dsu, N):
dsu.N, dsu.cc, dsu.par = N, N, [-1]*N
def merge(dsu, u, v, src = False):
x, y = dsu.leader(u), dsu.leader(v)
if x == y: return (x,y) if src else x
if dsu.par[x] > dsu.par[y]: x, y = y, x
dsu.par[x] += dsu.par[y]; dsu.par[y] = x; dsu.cc -= 1
return (x,y) if src else x
def same(dsu, u: int, v: int):
return dsu.leader(u) == dsu.leader(v)
def leader(dsu, i) -> int:
p = (par := dsu.par)[i]
while p >= 0:
if par[p] < 0: return p
par[i], i, p = par[p], par[p], par[par[p]]
return i
def size(dsu, i) -> int:
return -dsu.par[dsu.leader(i)]
def groups(dsu) -> CSRIncremental[int]:
sizes, row, p = [0]*dsu.cc, [-1]*dsu.N, 0
for i in range(dsu.cc):
while dsu.par[p] >= 0: p += 1
sizes[i], row[p] = -dsu.par[p], i; p += 1
csr = CSRIncremental(sizes)
for i in range(dsu.N): csr.append(row[dsu.leader(i)], i)
return csr
__iter__ = groups
def __len__(dsu):
return dsu.cc
def __contains__(dsu, uv):
u, v = uv
return dsu.same(u, v)
@classmethod
def compile(cls, N: int, M: int, shift = -1):
def parse_fn(ts: TokenStream):
dsu = cls(N)
for _ in range(M):
u, v = ts._line()
dsu.merge(int(u)+shift, int(v)+shift)
return dsu
return parse_fn
def floyds_cycle(F, root):
slow = fast = root
while F[fast] != -1 and F[F[fast]] != -1:
slow, fast = F[slow], F[F[fast]]
if slow == fast:
cyc = [slow]
while F[slow] != cyc[0]:
slow = F[slow]
cyc.append(slow)
return cyc
return None
def edmonds_branching(E, N, root) -> list[tuple[int,int,any]]:
# obtain incoming edges
Gin = [[] for _ in range(N)]
for id,(u,v,w) in enumerate(E):
if v != root:
Gin[v].append([w,u,id])
# heapify for fast access to optimal edges
for v in range(N):
heapify(Gin[v])
groups = DSU(N)
active = set(range(N))
active.discard(root)
def find_cycle(min_in):
for v in active:
cyc = floyds_cycle(min_in, v)
if cyc: return cyc
return None
def contract(cyc):
kickout = [-1]*len(E)
active.difference_update(cyc)
nv = reduce(groups.merge, cyc)
active.add(nv)
new_edges = []
# Update Gin to reflect the contracted cycle
for v in cyc:
cw, _, cid = Gin[v][0]
for edge in Gin[v]:
_, u, id = edge
if groups.leader(u) != nv:
edge[0] -= cw # update weight
kickout[id] = cid
new_edges.append(edge)
if new_edges[-1][0] < new_edges[0][0]:
new_edges[0], new_edges[-1] = new_edges[-1], new_edges[0]
Gin[v].clear()
Gin[nv] = new_edges
return kickout
def rec(Gin):
min_in = [groups.leader(Gin[v][0][1]) if Gin[v] else -1 for v in range(N)]
cyc = find_cycle(min_in)
if cyc:
C = { Gin[v][0][2] for v in cyc }
kickout = contract(cyc)
MCA = rec(Gin)
for id in MCA:
C.discard(kickout[id])
MCA.extend(C)
return MCA
else:
return [edges[0][2] for edges in Gin if edges]
return [E[id] for id in rec(Gin)]
if __name__ == '__main__':
main()