cp-library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub kobejean/cp-library

:heavy_check_mark: test/aoj/grl/grl_5_c_lca_table_iterative.test.py

Depends on

Code

# verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_5_C

from cp_library.alg.tree.tree_cls import Tree


def main():
    N, = read()
    T = Tree(N, [])
    for u in range(N):
        k, *adj = read()
        T[u].extend(adj)
    lca = LCATable(T, 0)
    Q, = read()
    for _ in range(Q):
        u, v = read()
        write(lca.query(u,v)[0])

from cp_library.alg.tree.lca_table_iterative_cls import LCATable
from cp_library.io.read_int_fn import read
from cp_library.io.write_fn import write

if __name__ == '__main__':
    main()
# verification-helper: PROBLEM https://onlinejudge.u-aizu.ac.jp/courses/library/5/GRL/all/GRL_5_C

'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
             https://kobejean.github.io/cp-library               
'''
from typing import Union


import typing
from collections import deque
from numbers import Number
from types import GenericAlias 
from typing import Callable, Collection, Iterator, Union
import os
import sys
from io import BytesIO, IOBase


class FastIO(IOBase):
    BUFSIZE = 8192
    newlines = 0

    def __init__(self, file):
        self._fd = file.fileno()
        self.buffer = BytesIO()
        self.writable = "x" in file.mode or "r" not in file.mode
        self.write = self.buffer.write if self.writable else None

    def read(self):
        BUFSIZE = self.BUFSIZE
        while True:
            b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
            if not b:
                break
            ptr = self.buffer.tell()
            self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
        self.newlines = 0
        return self.buffer.read()

    def readline(self):
        BUFSIZE = self.BUFSIZE
        while self.newlines == 0:
            b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
            self.newlines = b.count(b"\n") + (not b)
            ptr = self.buffer.tell()
            self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
        self.newlines -= 1
        return self.buffer.readline()

    def flush(self):
        if self.writable:
            os.write(self._fd, self.buffer.getvalue())
            self.buffer.truncate(0), self.buffer.seek(0)


class IOWrapper(IOBase):
    stdin: 'IOWrapper' = None
    stdout: 'IOWrapper' = None
    
    def __init__(self, file):
        self.buffer = FastIO(file)
        self.flush = self.buffer.flush
        self.writable = self.buffer.writable

    def write(self, s):
        return self.buffer.write(s.encode("ascii"))
    
    def read(self):
        return self.buffer.read().decode("ascii")
    
    def readline(self):
        return self.buffer.readline().decode("ascii")

sys.stdin = IOWrapper.stdin = IOWrapper(sys.stdin)
sys.stdout = IOWrapper.stdout = IOWrapper(sys.stdout)
from typing import TypeVar
_T = TypeVar('T')

class TokenStream(Iterator):
    stream = IOWrapper.stdin

    def __init__(self):
        self.queue = deque()

    def __next__(self):
        if not self.queue: self.queue.extend(self._line())
        return self.queue.popleft()
    
    def wait(self):
        if not self.queue: self.queue.extend(self._line())
        while self.queue: yield
 
    def _line(self):
        return TokenStream.stream.readline().split()

    def line(self):
        if self.queue:
            A = list(self.queue)
            self.queue.clear()
            return A
        return self._line()
TokenStream.default = TokenStream()

class CharStream(TokenStream):
    def _line(self):
        return TokenStream.stream.readline().rstrip()
CharStream.default = CharStream()


ParseFn = Callable[[TokenStream],_T]
class Parser:
    def __init__(self, spec: Union[type[_T],_T]):
        self.parse = Parser.compile(spec)

    def __call__(self, ts: TokenStream) -> _T:
        return self.parse(ts)
    
    @staticmethod
    def compile_type(cls: type[_T], args = ()) -> _T:
        if issubclass(cls, Parsable):
            return cls.compile(*args)
        elif issubclass(cls, (Number, str)):
            def parse(ts: TokenStream): return cls(next(ts))              
            return parse
        elif issubclass(cls, tuple):
            return Parser.compile_tuple(cls, args)
        elif issubclass(cls, Collection):
            return Parser.compile_collection(cls, args)
        elif callable(cls):
            def parse(ts: TokenStream):
                return cls(next(ts))              
            return parse
        else:
            raise NotImplementedError()
    
    @staticmethod
    def compile(spec: Union[type[_T],_T]=int) -> ParseFn[_T]:
        if isinstance(spec, (type, GenericAlias)):
            cls = typing.get_origin(spec) or spec
            args = typing.get_args(spec) or tuple()
            return Parser.compile_type(cls, args)
        elif isinstance(offset := spec, Number): 
            cls = type(spec)  
            def parse(ts: TokenStream): return cls(next(ts)) + offset
            return parse
        elif isinstance(args := spec, tuple):      
            return Parser.compile_tuple(type(spec), args)
        elif isinstance(args := spec, Collection):  
            return Parser.compile_collection(type(spec), args)
        elif isinstance(fn := spec, Callable): 
            def parse(ts: TokenStream): return fn(next(ts))
            return parse
        else:
            raise NotImplementedError()

    @staticmethod
    def compile_line(cls: _T, spec=int) -> ParseFn[_T]:
        if spec is int:
            fn = Parser.compile(spec)
            def parse(ts: TokenStream): return cls([int(token) for token in ts.line()])
            return parse
        else:
            fn = Parser.compile(spec)
            def parse(ts: TokenStream): return cls([fn(ts) for _ in ts.wait()])
            return parse

    @staticmethod
    def compile_repeat(cls: _T, spec, N) -> ParseFn[_T]:
        fn = Parser.compile(spec)
        def parse(ts: TokenStream): return cls([fn(ts) for _ in range(N)])
        return parse

    @staticmethod
    def compile_children(cls: _T, specs) -> ParseFn[_T]:
        fns = tuple((Parser.compile(spec) for spec in specs))
        def parse(ts: TokenStream): return cls([fn(ts) for fn in fns])  
        return parse
            
    @staticmethod
    def compile_tuple(cls: type[_T], specs) -> ParseFn[_T]:
        if isinstance(specs, (tuple,list)) and len(specs) == 2 and specs[1] is ...:
            return Parser.compile_line(cls, specs[0])
        else:
            return Parser.compile_children(cls, specs)

    @staticmethod
    def compile_collection(cls, specs):
        if not specs or len(specs) == 1 or isinstance(specs, set):
            return Parser.compile_line(cls, *specs)
        elif (isinstance(specs, (tuple,list)) and len(specs) == 2 and isinstance(specs[1], int)):
            return Parser.compile_repeat(cls, specs[0], specs[1])
        else:
            raise NotImplementedError()

class Parsable:
    @classmethod
    def compile(cls):
        def parser(ts: TokenStream): return cls(next(ts))
        return parser

class Edge(tuple, Parsable):
    @classmethod
    def compile(cls, I=-1):
        def parse(ts: TokenStream):
            u,v = ts.line()
            return cls((int(u)+I,int(v)+I))
        return parse

from enum import auto, IntFlag, IntEnum

class DFSFlags(IntFlag):
    ENTER = auto()
    DOWN = auto()
    BACK = auto()
    CROSS = auto()
    LEAVE = auto()
    UP = auto()
    MAXDEPTH = auto()

    RETURN_PARENTS = auto()
    RETURN_DEPTHS = auto()
    BACKTRACK = auto()
    CONNECT_ROOTS = auto()

    # Common combinations
    ALL_EDGES = DOWN | BACK | CROSS
    EULER_TOUR = DOWN | UP
    INTERVAL = ENTER | LEAVE
    TOPDOWN = DOWN | CONNECT_ROOTS
    BOTTOMUP = UP | CONNECT_ROOTS
    RETURN_ALL = RETURN_PARENTS | RETURN_DEPTHS

class DFSEvent(IntEnum):
    ENTER = DFSFlags.ENTER 
    DOWN = DFSFlags.DOWN 
    BACK = DFSFlags.BACK 
    CROSS = DFSFlags.CROSS 
    LEAVE = DFSFlags.LEAVE 
    UP = DFSFlags.UP 
    MAXDEPTH = DFSFlags.MAXDEPTH
    


def elist(est_len: int) -> list: ...
try:
    from __pypy__ import newlist_hint
except:
    def newlist_hint(hint):
        return []
elist = newlist_hint
    
from typing import Iterable, Union, overload
from math import inf

class GraphProtocol(list, Parsable):
    def __init__(G, N: int, E: list = None, adj: Iterable = None):
        G.N = N
        if E is not None:
            G.M, G.E = len(E), E
        if adj is not None:
            super().__init__(adj)

    def neighbors(G, v: int) -> Iterable[int]:
        return G[v]
    
    def edge_ids(G) -> list[list[int]]: ...

    @overload
    def distance(G) -> list[list[int]]: ...
    @overload
    def distance(G, s: int = 0) -> list[int]: ...
    @overload
    def distance(G, s: int, g: int) -> int: ...
    def distance(G, s = None, g = None):
        if s == None:
            return G.floyd_warshall()
        else:
            return G.bfs(s, g)

    @overload
    def bfs(G, s: Union[int,list] = 0) -> list[int]: ...
    @overload
    def bfs(G, s: Union[int,list], g: int) -> int: ...
    def bfs(G, s = 0, g = None):
        D = [inf for _ in range(G.N)]
        q = deque([s] if isinstance(s, int) else s)
        for u in q: D[u] = 0
        while q:
            nd = D[u := q.popleft()]+1
            if u == g: return D[u]
            for v in G.neighbors(u):
                if nd < D[v]:
                    D[v] = nd
                    q.append(v)
        return D if g is None else inf 

    @overload
    def shortest_path(G, s: int, g: int) -> Union[list[int],None]: ...
    @overload
    def shortest_path(G, s: int, g: int, distances = True) -> tuple[Union[list[int],None],list[int]]: ...
    def shortest_path(G, s: int, g: int, distances = False) -> list[int]:
        D = [inf] * G.N
        D[s] = 0
        if s == g:
            return ([], D) if distances else []
            
        par = [-1] * G.N
        par_edge = [-1] * G.N
        Eid = G.edge_ids()
        q = deque([s])
        
        while q:
            nd = D[u := q.popleft()] + 1
            if u == g: break
                
            for v, eid in zip(G[u], Eid[u]):
                if nd < D[v]:
                    D[v] = nd
                    par[v] = u
                    par_edge[v] = eid
                    q.append(v)
        
        if D[g] == inf:
            return (None, D) if distances else None
            
        path = []
        current = g
        while current != s:
            path.append(par_edge[current])
            current = par[current]
            
        return (path[::-1], D) if distances else path[::-1]
            
     
            
        
    def floyd_warshall(G) -> list[list[int]]:
        D = [[inf]*G.N for _ in range(G.N)]

        for u in range(G.N):
            D[u][u] = 0
            for v in G.neighbors(u):
                D[u][v] = 1
        
        for k, Dk in enumerate(D):
            for Di in D:
                if Di[k] == inf: continue
                for j in range(G.N):
                    if Dk[j] == inf: continue
                    Di[j] = min(Di[j], Di[k]+Dk[j])
        return D
    
    def find_cycle(G, s = 0, vis = None, par = None):
        N = G.N
        vis = vis or [0] * N
        par = par or [-1] * N
        if vis[s]: return None
        vis[s] = 1
        stack = [(True, s)]
        while stack:
            forw, v = stack.pop()
            if forw:
                stack.append((False, v))
                vis[v] = 1
                for u in G.neighbors(v):
                    if vis[u] == 1 and u != par[v]:
                        # Cycle detected
                        cyc = [u]
                        vis[u] = 2
                        while v != u:
                            cyc.append(v)
                            vis[v] = 2
                            v = par[v]
                        return cyc
                    elif vis[u] == 0:
                        par[u] = v
                        stack.append((True, u))
            else:
                vis[v] = 2
        return None

    def find_minimal_cycle(G, s=0):
        D, par, que = [inf] * (N := G.N), [-1] * N, deque([s])
        D[s] = 0
        while que:
            for v in G[u := que.popleft()]:
                if v == s:  # Found cycle back to start
                    cycle = [u]
                    while u != s: cycle.append(u := par[u])
                    return cycle
                if D[v] < inf: continue
                D[v], par[v] = D[u]+1, u
                que.append(v)
    
    def bridges(G):
        tin = [-1] * G.N
        low = [-1] * G.N
        par = [-1] * G.N
        vis = [0] * G.N
        in_edge = [-1] * G.N

        Eid = G.edge_ids()
        time = 0
        bridges = []
        stack = list(range(G.N))
        while stack:
            p = par[v := stack.pop()]
            if vis[v] == 0:
                vis[v] = 1
                tin[v] = low[v] = time
                time += 1
                stack.append(v)
                for i, child in enumerate(G.neighbors(v)):
                    if child == p: continue
                    if vis[child] == 0: # Tree edge - recurse
                        par[child] = v
                        in_edge[child] = Eid[v][i]
                        stack.append(child)
                    else: # Back edge - update low-link value
                        low[v] = min(low[v], tin[child])
            elif vis[v] == 1:
                vis[v] = 2
                if p != -1:
                    low[p] = min(low[p], low[v])
                    if low[v] > tin[p]: bridges.append(in_edge[v])
        return bridges

    def articulation_points(G):
        '''
        Find articulation points in an undirected graph using DFS events.
        Returns a boolean list that is True for indices where the vertex is an articulation point.
        '''
        N = G.N
        order = [-1] * N
        low = [-1] * N
        par = [-1] * N
        state = [0] * N
        children = [0] * N
        ap = [False] * N
        time = 0
        stack = list(range(N))

        while stack:
            v = stack.pop()
            p = par[v]
            if state[v] == 0:
                state[v] = 1
                order[v] = low[v] = time
                time += 1
            
                stack.append(v)
                for child in G[v]:
                    if order[child] == -1:
                        par[child] = v
                        stack.append(child)
                    elif child != p:
                        low[v] = min(low[v], order[child])
                if p != -1:
                    children[p] += 1
            elif state[v] == 1:
                state[v] = 2
                ap[v] |= p == -1 and children[v] > 1
                if p != -1:
                    low[p] = min(low[p], low[v])
                    ap[p] |= par[p] != -1 and low[v] >= order[p]

        return ap
    
    def dfs_events(G, flags: DFSFlags, s: Union[int,list,None] = None, max_depth: Union[int,None] = None):
        if flags == DFSFlags.INTERVAL:
            if max_depth is None:
                return G.dfs_enter_leave(s)
        elif flags == DFSFlags.DOWN or flags == DFSFlags.TOPDOWN:
            if max_depth is None:
                edges = G.dfs_topdown(s, DFSFlags.CONNECT_ROOTS in flags)
                return [(DFSEvent.DOWN, p, u) for p,u in edges]
        elif flags == DFSFlags.UP or flags == DFSFlags.BOTTOMUP:
            if max_depth is None:
                edges = G.dfs_bottomup(s, DFSFlags.CONNECT_ROOTS in flags)
                return [(DFSEvent.UP, p, u) for p,u in edges]
        elif flags & DFSFlags.BACKTRACK:
            return G.dfs_backtrack(flags, s, max_depth)
        state = [0] * G.N
        child = [0] * G.N
        stack = [0] * G.N
        if flags & DFSFlags.RETURN_PARENTS:
            parents = [-1] * G.N
        if flags & DFSFlags.RETURN_DEPTHS:
            depths = [-1] * G.N

        events = []
        for s in G.starts(s):
            stack[depth := 0] = s
            if (DFSFlags.DOWN|DFSFlags.CONNECT_ROOTS) in flags:
                events.append((DFSEvent.DOWN,-1,s))
            while depth != -1:
                u = stack[depth]
                
                if not state[u]:
                    state[u] = 1
                    if flags & DFSFlags.ENTER:
                        events.append((DFSEvent.ENTER, u))
                    if flags & DFSFlags.RETURN_DEPTHS:
                        depths[u] = depth
                
                if (c := child[u]) < len(G[u]):
                    child[u] += 1
                    if (s := state[v := G[u][c]]) == 0: # Unvisited
                        if max_depth is None or depth <= max_depth:
                            if flags & DFSFlags.DOWN:
                                events.append((DFSEvent.DOWN, u, v))
                            stack[depth := depth+1] = v
                            if flags & DFSFlags.RETURN_PARENTS:
                                parents[v] = u
                    elif s == 1:  # In progress
                        if flags & DFSFlags.BACK:
                            events.append((DFSEvent.BACK, u, v))
                    elif s == 2: # Completed
                        if flags & DFSFlags.CROSS:
                            events.append((DFSEvent.CROSS, u, v))
                else:
                    depth -= 1
                    state[u] = 0 if DFSFlags.BACKTRACK in flags else 2
                    if flags & DFSFlags.LEAVE:
                        events.append((DFSEvent.LEAVE, u))
                    if depth != -1 and flags & DFSFlags.UP:
                        events.append((DFSEvent.UP, stack[depth], u))
            if (DFSFlags.UP|DFSFlags.CONNECT_ROOTS) in flags:
                events.append((DFSEvent.UP,-1,s))
        ret = tuple((events,)) if DFSFlags.RETURN_ALL & flags else events
        if DFSFlags.RETURN_PARENTS in flags:
            ret += (parents,)
        if DFSFlags.RETURN_DEPTHS in flags:
            ret += (depths,)
        return ret

    def dfs_backtrack(G, flags: DFSFlags, s: Union[int,list] = None, max_depth: Union[int,None] = None):
        stack_depth = (max_depth+1 if max_depth is not None else G.N)
        stack = [0]*stack_depth
        child = [0]*stack_depth
        state = [0]*G.N
        events: list[tuple[DFSEvent, int]|tuple[DFSEvent, int, int]] = []

        for s in G.starts(s):
            if state[s]: continue
            state[s] = 1
            stack[depth := 0] = s
            if DFSFlags.DOWN|DFSFlags.CONNECT_ROOTS in flags:
                events.append((DFSEvent.DOWN,-1,s))
            while depth != -1:
                u = stack[depth]
                if state[u] == 1:
                    state[u] = 2
                    if DFSFlags.ENTER in flags:
                        events.append((DFSEvent.ENTER,u))
                    if max_depth is not None and depth >= max_depth:
                        child[depth] = len(G[u])
                        if DFSFlags.MAXDEPTH in flags:
                            events.append((DFSEvent.MAXDEPTH,u))

                if (c := child[depth]) < len(G[u]):
                    child[depth] += 1
                    if state[v := G[u][c]]:
                        if DFSFlags.BACK in flags:
                            events.append((DFSEvent.BACK,u,v))
                        continue
                    state[v] = 1
                    if DFSFlags.DOWN in flags:
                        events.append((DFSEvent.DOWN,u,v))
                    stack[depth := depth+1] = v
                else:
                    state[u] = 0
                    if DFSFlags.LEAVE in flags:
                        events.append((DFSEvent.LEAVE,u))
                    child[depth] = 0
                    depth -= 1
                    if depth and DFSFlags.UP in flags:
                        events.append((DFSEvent.UP, stack[depth], u))
            if DFSFlags.UP|DFSFlags.CONNECT_ROOTS in flags:
                events.append((DFSEvent.UP,-1,s))
        return events

    def dfs_enter_leave(G, s: Union[int,list,None] = None):
        state = [True] * G.N
        child: list[int] = elist(G.N)
        stack: list[int] = elist(G.N)

        events = []
        for s in G.starts(s):
            if not state[s]: continue
            stack.append(s)
            child.append(0)
            
            while stack:
                u = stack[-1]
                
                if state[u]:
                    state[u] = False
                    events.append((DFSEvent.ENTER, u))

                
                if (c := child[-1]) < len(G[u]):
                    child[-1] += 1
                    if state[v := G[u][c]]:
                        stack.append(v)
                        child.append(0)
                else:
                    stack.pop()
                    child.pop()
                    events.append((DFSEvent.LEAVE, u))

        return events
    
    def dfs_topdown(G, s: Union[int,list,None] = None, connect_roots = False):
        '''Returns list of (u,v) representing u->v edges in order of top down discovery'''
        stack: list[int] = elist(G.N)
        vis = [False]*G.N
        edges: list[tuple[int,int]] = elist(G.N)

        for s in G.starts(s):
            if vis[s]: continue
            if connect_roots:
                edges.append((-1,s))
            vis[s] = True
            stack.append(s)
            while stack:
                u = stack.pop()
                for v in G[u]:
                    if vis[v]: continue
                    vis[v] = True
                    edges.append((u,v))
                    stack.append(v)
        return edges
    
    def dfs_bottomup(G, s: Union[int,list,None] = None, connect_roots = False):
        '''Returns list of (p,u) representing p->u edges in bottom up order'''
        edges = G.dfs_topdown(s, connect_roots)
        edges.reverse()
        return edges

    def is_bipartite(G):
        N = G.N
        que = deque()
        color = [-1]*N
                
        for s in range(N):
            if color[s] >= 0:
                continue
            color[s] = 1
            que.append(s)
            while que:
                u = que.popleft()
                for v in G[u]:
                    if color[v] == -1:
                        color[v] = 1 - color[u]
                        que.append(v)
                    elif color[v] == color[u]:
                        return False
        return True
    
    def starts(G, v: Union[int,list,None]) -> Iterable:
        if isinstance(v, int):
            return (v,)
        elif v is None:
            return range(G.N)
        else:
            return v

    @classmethod
    def compile(cls, N: int, M: int, E):
        edge = Parser.compile(E)
        def parse(ts: TokenStream):
            return cls(N, [edge(ts) for _ in range(M)])
        return parse
    

class Graph(GraphProtocol):
    def __init__(G, N: int, E: list[Edge]=[]):
        super().__init__(N, E, ([] for _ in range(N)))
        for u,v in G.E:
            G[u].append(v)
            G[v].append(u)

    def edge_ids(G) -> list[list[int]]:
        Eid = [[] for _ in range(G.N)]
        for e,(u,v) in enumerate(G.E):
            Eid[u].append(e)
            Eid[v].append(e)
        return Eid

    @classmethod
    def compile(cls, N: int, M: int, E: Union[type,int] = Edge[-1]):
        if isinstance(E, int): E = Edge[E]
        return super().compile(N, M, E)

    

from typing import overload, Literal, Union
from functools import cached_property


def sort2(a, b):
    return (a,b) if a < b else (b,a)

import operator
from itertools import accumulate

def presum(iter: Iterable[_T], func: Callable[[_T,_T],_T] = None, initial: _T = None, step = 1) -> list[_T]:
    if step == 1:
        return list(accumulate(iter, func, initial=initial))
    else:
        assert step >= 2
        if func is None:
            func = operator.add
        A = list(iter)
        if initial is not None:
            A = [initial] + A
        for i in range(step,len(A)):
            A[i] = func(A[i], A[i-step])
        return A
# from typing import Generic
# from cp_library.misc.typing import _T

def min2(a, b):
    return a if a < b else b


class MinSparseTable:
    def __init__(st, arr: list):
        st.N = N = len(arr)
        st.log = N.bit_length()
        st.data = data = [0] * (st.log*N)
        data[:N] = arr 
        for i in range(1,st.log):
            a, b, c = i*N, (i-1)*N, (i-1)*N + (1 << (i-1))
            for j in range(N - (1 << i) + 1):
                data[a+j] = min2(data[b+j], data[c+j])

    def query(st, l: int, r: int):
        k = (r-l).bit_length() - 1
        return min2(st.data[k*st.N + l], st.data[k*st.N + r - (1<<k)])
    

class LCATable(MinSparseTable):
    def __init__(lca, T, root = 0):
        N = len(T)
        T.euler_tour(root)
        lca.depth = depth = presum(T.delta)
        lca.tin, lca.tout = T.tin[:], T.tout[:]
        lca.mask = (1 << (shift := N.bit_length()))-1
        lca.shift = shift
        order = T.order
        M = len(order)
        packets = [0]*M
        for i in range(M):
            packets[i] = depth[i] << shift | order[i] 
        super().__init__(packets)

    def _query(lca, u, v):
        l, r = sort2(lca.tin[u], lca.tin[v]); r += 1
        da = super().query(l, r)
        return l, r, da & lca.mask, da >> lca.shift

    def query(lca, u, v) -> tuple[int,int]:
        l, r, a, d = lca._query(u, v)
        return a, d
    
    def distance(lca, u, v) -> int:
        l, r, a, d = lca._query(u, v)
        return lca.depth[l] + lca.depth[r-1] - 2*d
    
    def path(lca, u, v):
        path, par, lca, c = [], lca.T.par, lca.query(u, v)[0], u
        while c != lca:
            path.append(c)
            c = par[c]
        path.append(lca)
        rev_path, c = [], v
        while c != lca:
            rev_path.append(c)
            c = par[c]
        path.extend(reversed(rev_path))
        return path

class TreeProtocol(GraphProtocol):

    @cached_property
    def lca(T):
        return LCATable(T)
    
    @overload
    def diameter(T) -> int: ...
    @overload
    def diameter(T, endpoints: Literal[True]) -> tuple[int,int,int]: ...
    def diameter(T, endpoints = False):
        mask = (1 << (shift := T.N.bit_length())) - 1
        s = max(d << shift | v for v,d in enumerate(T.distance(0))) & mask
        dg = max(d << shift | v for v,d in enumerate(T.distance(s))) 
        diam, g = dg >> shift, dg & mask
        return (diam, s, g) if endpoints else diam
    
    @overload
    def distance(T) -> list[list[int]]: ...
    @overload
    def distance(T, s: int = 0) -> list[int]: ...
    @overload
    def distance(T, s: int, g: int) -> int: ...
    def distance(T, s = None, g = None):
        if s == None:
            return [T.dfs(u) for u in range(T.N)]
        else:
            return T.dfs(s, g)
            
    @overload
    def dfs(T, s: int = 0) -> list[int]: ...
    @overload
    def dfs(T, s: int, g: int) -> int: ...
    def dfs(T, s = 0, g = None):
        D = [inf for _ in range(T.N)]
        D[s] = 0
        state = [True for _ in range(T.N)]
        stack = [s]

        while stack:
            u = stack.pop()
            if u == g: return D[u]
            state[u] = False
            for v in T[u]:
                if state[v]:
                    D[v] = D[u]+1
                    stack.append(v)
        return D if g is None else inf 


    def dfs_events(G, flags: DFSFlags, s: int = 0):         
        events = []
        stack = [(s,-1)]
        adj = [None]*G.N


        while stack:
            u, p = stack[-1]
            
            if adj[u] is None:
                adj[u] = iter(G.neighbors(u))
                if DFSFlags.ENTER in flags:
                    events.append((DFSEvent.ENTER, u))
            
            if (v := next(adj[u], None)) is not None:
                if v == p:
                    if DFSFlags.BACK in flags:
                        events.append((DFSEvent.BACK, u, v))
                else:
                    if DFSFlags.DOWN in flags:
                        events.append((DFSEvent.DOWN, u, v))
                    stack.append((v,u))
            else:
                stack.pop()

                if DFSFlags.LEAVE in flags:
                    events.append((DFSEvent.LEAVE, u))
                if p != -1 and DFSFlags.UP in flags:
                    events.append((DFSEvent.UP, u, p))
        return events
    
    def euler_tour(T, s = 0):
        N = len(T)
        T.tin = tin = [-1] * N
        T.tout = tout = [-1] * N
        T.par = par = [-1] * N
        T.order = order = elist(2*N)
        T.delta = delta = elist(2*N)
        
        stack = elist(N)
        stack.append(s)

        while stack:
            u = stack.pop()
            p = par[u]
            
            if tin[u] == -1:
                tin[u] = len(order)
                
                for v in T[u]:
                    if v != p:
                        par[v] = u
                        stack.append(u)
                        stack.append(v)
                
                delta.append(1)
            else:
                delta.append(-1)
            
            order.append(u)
            tout[u] = len(order)
        delta[0] = delta[-1] = 0

    def hld_precomp(T, r = 0):
        N, time = T.N, 0
        tin, tout, size = [0]*N, [0]*N, [1]*N+[0]
        par, heavy, head = [-1]*N, [-1]*N, [r]*N
        depth, order, state = [0]*N, [0]*N, [0]*N
        stack = elist(N)
        stack.append(r)
        while stack:
            if (s := state[v := stack.pop()]) == 0: # dfs down
                p, state[v] = par[v], 1
                stack.append(v)
                for c in T[v]:
                    if c != p:
                        depth[c], par[c] = depth[v]+1, v
                        stack.append(c)

            elif s == 1: # dfs up
                p, l = par[v], -1
                for c in T[v]:
                    if c != p:
                        size[v] += size[c]
                        if size[c] > size[l]:
                            l = c
                heavy[v] = l
                if p == -1:
                    state[v] = 2
                    stack.append(v)

            elif s == 2: # decompose down
                p, h, l = par[v], head[v], heavy[v]
                tin[v], order[time], state[v] = time, v, 3
                time += 1
                stack.append(v)
                
                for c in T[v]:
                    if c != p and c != l:
                        head[c], state[c] = c, 2
                        stack.append(c)

                if l != -1:
                    head[l], state[l] = h, 2
                    stack.append(l)

            elif s == 3: # decompose up
                tout[v] = time
        T.size, T.depth = size, depth
        T.order, T.tin, T.tout = order, tin, tout
        T.par, T.heavy, T.head = par, heavy, head

class Tree(TreeProtocol, Graph):
    @classmethod
    def compile(cls, N: int, E: Union[type,int] = Edge[-1]):
        return Graph.compile.__func__(cls, N, N-1, E)
    
    


def main():
    N, = read()
    T = Tree(N, [])
    for u in range(N):
        k, *adj = read()
        T[u].extend(adj)
    lca = LCATable(T, 0)
    Q, = read()
    for _ in range(Q):
        u, v = read()
        write(lca.query(u,v)[0])


def read(shift=0, base=10):
    return [int(s, base) + shift for s in input().split()]

def write(*args, **kwargs):
    '''Prints the values to a stream, or to stdout_fast by default.'''
    sep, file = kwargs.pop("sep", " "), kwargs.pop("file", IOWrapper.stdout)
    at_start = True
    for x in args:
        if not at_start:
            file.write(sep)
        file.write(str(x))
        at_start = False
    file.write(kwargs.pop("end", "\n"))
    if kwargs.pop("flush", False):
        file.flush()

if __name__ == '__main__':
    main()
Back to top page