cp-library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub kobejean/cp-library

:heavy_check_mark: test/library-checker/convolution/min_plus_convolution_convex_convex.test.py

Depends on

Code

# verification-helper: PROBLEM https://judge.yosupo.jp/problem/min_plus_convolution_convex_convex

def main():
    N, M = read(tuple[int, ...])
    A = read(list[int])
    B = read(list[int])
    C = minplus_conv_cnvx(A,B)
    write(*C)
    
from cp_library.io.read_fn import read
from cp_library.io.write_fn import write
from cp_library.math.conv.minplus_conv_fn import minplus_conv_cnvx

if __name__ == "__main__":
    main()
# verification-helper: PROBLEM https://judge.yosupo.jp/problem/min_plus_convolution_convex_convex

def main():
    N, M = read(tuple[int, ...])
    A = read(list[int])
    B = read(list[int])
    C = minplus_conv_cnvx(A,B)
    write(*C)
    
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
             https://kobejean.github.io/cp-library               
'''

from typing import Iterable, Type, Union, overload
import typing
from collections import deque
from numbers import Number
from types import GenericAlias 
from typing import Callable, Collection, Iterator, Union
import os
import sys
from io import BytesIO, IOBase


class FastIO(IOBase):
    BUFSIZE = 8192
    newlines = 0

    def __init__(self, file):
        self._fd = file.fileno()
        self.buffer = BytesIO()
        self.writable = "x" in file.mode or "r" not in file.mode
        self.write = self.buffer.write if self.writable else None

    def read(self):
        BUFSIZE = self.BUFSIZE
        while True:
            b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
            if not b:
                break
            ptr = self.buffer.tell()
            self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
        self.newlines = 0
        return self.buffer.read()

    def readline(self):
        BUFSIZE = self.BUFSIZE
        while self.newlines == 0:
            b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
            self.newlines = b.count(b"\n") + (not b)
            ptr = self.buffer.tell()
            self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
        self.newlines -= 1
        return self.buffer.readline()

    def flush(self):
        if self.writable:
            os.write(self._fd, self.buffer.getvalue())
            self.buffer.truncate(0), self.buffer.seek(0)


class IOWrapper(IOBase):
    stdin: 'IOWrapper' = None
    stdout: 'IOWrapper' = None
    
    def __init__(self, file):
        self.buffer = FastIO(file)
        self.flush = self.buffer.flush
        self.writable = self.buffer.writable

    def write(self, s):
        return self.buffer.write(s.encode("ascii"))
    
    def read(self):
        return self.buffer.read().decode("ascii")
    
    def readline(self):
        return self.buffer.readline().decode("ascii")

sys.stdin = IOWrapper.stdin = IOWrapper(sys.stdin)
sys.stdout = IOWrapper.stdout = IOWrapper(sys.stdout)
from typing import TypeVar
_T = TypeVar('T')

class TokenStream(Iterator):
    stream = IOWrapper.stdin

    def __init__(self):
        self.queue = deque()

    def __next__(self):
        if not self.queue: self.queue.extend(self._line())
        return self.queue.popleft()
    
    def wait(self):
        if not self.queue: self.queue.extend(self._line())
        while self.queue: yield
 
    def _line(self):
        return TokenStream.stream.readline().split()

    def line(self):
        if self.queue:
            A = list(self.queue)
            self.queue.clear()
            return A
        return self._line()
TokenStream.default = TokenStream()

class CharStream(TokenStream):
    def _line(self):
        return TokenStream.stream.readline().rstrip()
CharStream.default = CharStream()


ParseFn = Callable[[TokenStream],_T]
class Parser:
    def __init__(self, spec: Union[type[_T],_T]):
        self.parse = Parser.compile(spec)

    def __call__(self, ts: TokenStream) -> _T:
        return self.parse(ts)
    
    @staticmethod
    def compile_type(cls: type[_T], args = ()) -> _T:
        if issubclass(cls, Parsable):
            return cls.compile(*args)
        elif issubclass(cls, (Number, str)):
            def parse(ts: TokenStream): return cls(next(ts))              
            return parse
        elif issubclass(cls, tuple):
            return Parser.compile_tuple(cls, args)
        elif issubclass(cls, Collection):
            return Parser.compile_collection(cls, args)
        elif callable(cls):
            def parse(ts: TokenStream):
                return cls(next(ts))              
            return parse
        else:
            raise NotImplementedError()
    
    @staticmethod
    def compile(spec: Union[type[_T],_T]=int) -> ParseFn[_T]:
        if isinstance(spec, (type, GenericAlias)):
            cls = typing.get_origin(spec) or spec
            args = typing.get_args(spec) or tuple()
            return Parser.compile_type(cls, args)
        elif isinstance(offset := spec, Number): 
            cls = type(spec)  
            def parse(ts: TokenStream): return cls(next(ts)) + offset
            return parse
        elif isinstance(args := spec, tuple):      
            return Parser.compile_tuple(type(spec), args)
        elif isinstance(args := spec, Collection):  
            return Parser.compile_collection(type(spec), args)
        elif isinstance(fn := spec, Callable): 
            def parse(ts: TokenStream): return fn(next(ts))
            return parse
        else:
            raise NotImplementedError()

    @staticmethod
    def compile_line(cls: _T, spec=int) -> ParseFn[_T]:
        if spec is int:
            fn = Parser.compile(spec)
            def parse(ts: TokenStream): return cls([int(token) for token in ts.line()])
            return parse
        else:
            fn = Parser.compile(spec)
            def parse(ts: TokenStream): return cls([fn(ts) for _ in ts.wait()])
            return parse

    @staticmethod
    def compile_repeat(cls: _T, spec, N) -> ParseFn[_T]:
        fn = Parser.compile(spec)
        def parse(ts: TokenStream): return cls([fn(ts) for _ in range(N)])
        return parse

    @staticmethod
    def compile_children(cls: _T, specs) -> ParseFn[_T]:
        fns = tuple((Parser.compile(spec) for spec in specs))
        def parse(ts: TokenStream): return cls([fn(ts) for fn in fns])  
        return parse
            
    @staticmethod
    def compile_tuple(cls: type[_T], specs) -> ParseFn[_T]:
        if isinstance(specs, (tuple,list)) and len(specs) == 2 and specs[1] is ...:
            return Parser.compile_line(cls, specs[0])
        else:
            return Parser.compile_children(cls, specs)

    @staticmethod
    def compile_collection(cls, specs):
        if not specs or len(specs) == 1 or isinstance(specs, set):
            return Parser.compile_line(cls, *specs)
        elif (isinstance(specs, (tuple,list)) and len(specs) == 2 and isinstance(specs[1], int)):
            return Parser.compile_repeat(cls, specs[0], specs[1])
        else:
            raise NotImplementedError()

class Parsable:
    @classmethod
    def compile(cls):
        def parser(ts: TokenStream): return cls(next(ts))
        return parser

@overload
def read() -> Iterable[int]: ...
@overload
def read(spec: int) -> list[int]: ...
@overload
def read(spec: Union[Type[_T],_T], char=False) -> _T: ...
def read(spec: Union[Type[_T],_T] = None, char=False):
    if not char and spec is None: return map(int, TokenStream.default.line())
    parser: _T = Parser.compile(spec)
    return parser(CharStream.default if char else TokenStream.default)

def write(*args, **kwargs):
    '''Prints the values to a stream, or to stdout_fast by default.'''
    sep, file = kwargs.pop("sep", " "), kwargs.pop("file", IOWrapper.stdout)
    at_start = True
    for x in args:
        if not at_start:
            file.write(sep)
        file.write(str(x))
        at_start = False
    file.write(kwargs.pop("end", "\n"))
    if kwargs.pop("flush", False):
        file.flush()


def monotone_minima(N: int, M: int, func: Callable[[int,int,int],bool]):
    '''
    Finds row minima in a totally monotone N×M matrix using the SMAWK algorithm.
    The matrix is defined implicitly through the comparison function.
    
    A matrix is totally monotone if the minimum in row i occurs at column j,
    then the minimum in row i+1 must occur at column j' where j ≤ j'.
    
    Time: O(N log M), Space: O(N)
    
    Args:
        N: Number of rows
        M: Number of columns
        func(i,j,k): Returns True if element (i,j) < element (i,k)
    
    Returns:
        List of column indices containing the minimum value for each row
    
    Example:
        # Find minima where each element is (i-j)²
        min_indices = monotone_minima(5, 5, lambda i,j,k: (i-j)**2 < (i-k)**2)
    '''
    min_j, st = [0] * N, elist(N)
    st.append((0, N, 0, M))
    while st:
        li, ri, lj, rj = st.pop()
        if li == ri: continue
        mi, mj = li + ri >> 1, lj
        for j in range(lj + 1, rj):
            if func(mi, mj, j): mj = j
        min_j[mi] = mj
        st.append((li, mi, lj, mj+1))
        st.append((mi+1, ri, mj, rj))
    return min_j



def elist(est_len: int) -> list: ...
try:
    from __pypy__ import newlist_hint
except:
    def newlist_hint(hint):
        return []
elist = newlist_hint
    

'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
    x₀ ────────●─●────────●───●────────●───────●────────► X₀
                ╳          ╲ ╱          ╲     ╱          
    x₄ ────────●─●────────●─╳─●────────●─╲───╱─●────────► X₁
                           ╳ ╳          ╲ ╲ ╱ ╱          
    x₂ ────────●─●────────●─╳─●────────●─╲─╳─╱─●────────► X₂
                ╳          ╱ ╲          ╲ ╳ ╳ ╱          
    x₆ ────────●─●────────●───●────────●─╳─╳─╳─●────────► X₃
                                        ╳ ╳ ╳ ╳         
    x₁ ────────●─●────────●───●────────●─╳─╳─╳─●────────► X₄
                ╳          ╲ ╱          ╱ ╳ ╳ ╲          
    x₅ ────────●─●────────●─╳─●────────●─╱─╳─╲─●────────► X₅
                           ╳ ╳          ╱ ╱ ╲ ╲          
    x₃ ────────●─●────────●─╳─●────────●─╱───╲─●────────► X₆
                ╳          ╱ ╲          ╱     ╲          
    x₇ ────────●─●────────●───●────────●───────●────────► X₇
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
                      Math - Convolution                     
'''

def minplus_conv_arb_cnvx(arb: list[int], cnvx: list[int]) -> list[int]:
    N, M = len(cnvx), len(arb)
    def cmp(i, j, k):
        return i >= k and (i-j >= N or (cnvx[i-j] + arb[j] >= cnvx[i-k] + arb[k]))
    cols = monotone_minima(N+M-1, M, cmp)
    return [arb[j] + cnvx[i-j] for i, j in enumerate(cols)]

def minplus_conv_cnvx(A: list[int], B: list[int]) -> list[int]:
    if not (N := len(A)) | (M := len(B)): return []
    C = [0] * (K:=N+M-1)
    C[0], I, J = A[i := 0] + B[j := 0], N-1, M-1
    for k in range(1, K):
        if j == J or (i != I and A[i+1] + B[j] < A[i] + B[j+1]): i += 1
        else: j += 1
        C[k] = A[i] + B[j]
    return C

def minplus_iconv(A: list[int], B: list[int]):
    N, M = len(A), len(B)
    for i in range(N-1,-1,-1):
        A[i] = min(B[j] + A[i-j] for j in range(min(M,i+1)))   

if __name__ == "__main__":
    main()
Back to top page