This documentation is automatically generated by online-judge-tools/verification-helper
# verification-helper: PROBLEM https://judge.yosupo.jp/problem/min_plus_convolution_convex_convex
def main():
N, M = read(tuple[int, ...])
A = read(list[int])
B = read(list[int])
C = minplus_conv_cnvx(A,B)
write(*C)
from cp_library.io.read_fn import read
from cp_library.io.write_fn import write
from cp_library.math.conv.minplus_conv_fn import minplus_conv_cnvx
if __name__ == "__main__":
main()
# verification-helper: PROBLEM https://judge.yosupo.jp/problem/min_plus_convolution_convex_convex
def main():
N, M = read(tuple[int, ...])
A = read(list[int])
B = read(list[int])
C = minplus_conv_cnvx(A,B)
write(*C)
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
from typing import Iterable, Type, Union, overload
import typing
from collections import deque
from numbers import Number
from types import GenericAlias
from typing import Callable, Collection, Iterator, Union
import os
import sys
from io import BytesIO, IOBase
class FastIO(IOBase):
BUFSIZE = 8192
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
BUFSIZE = self.BUFSIZE
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
BUFSIZE = self.BUFSIZE
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
stdin: 'IOWrapper' = None
stdout: 'IOWrapper' = None
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
def write(self, s):
return self.buffer.write(s.encode("ascii"))
def read(self):
return self.buffer.read().decode("ascii")
def readline(self):
return self.buffer.readline().decode("ascii")
sys.stdin = IOWrapper.stdin = IOWrapper(sys.stdin)
sys.stdout = IOWrapper.stdout = IOWrapper(sys.stdout)
from typing import TypeVar
_T = TypeVar('T')
class TokenStream(Iterator):
stream = IOWrapper.stdin
def __init__(self):
self.queue = deque()
def __next__(self):
if not self.queue: self.queue.extend(self._line())
return self.queue.popleft()
def wait(self):
if not self.queue: self.queue.extend(self._line())
while self.queue: yield
def _line(self):
return TokenStream.stream.readline().split()
def line(self):
if self.queue:
A = list(self.queue)
self.queue.clear()
return A
return self._line()
TokenStream.default = TokenStream()
class CharStream(TokenStream):
def _line(self):
return TokenStream.stream.readline().rstrip()
CharStream.default = CharStream()
ParseFn = Callable[[TokenStream],_T]
class Parser:
def __init__(self, spec: Union[type[_T],_T]):
self.parse = Parser.compile(spec)
def __call__(self, ts: TokenStream) -> _T:
return self.parse(ts)
@staticmethod
def compile_type(cls: type[_T], args = ()) -> _T:
if issubclass(cls, Parsable):
return cls.compile(*args)
elif issubclass(cls, (Number, str)):
def parse(ts: TokenStream): return cls(next(ts))
return parse
elif issubclass(cls, tuple):
return Parser.compile_tuple(cls, args)
elif issubclass(cls, Collection):
return Parser.compile_collection(cls, args)
elif callable(cls):
def parse(ts: TokenStream):
return cls(next(ts))
return parse
else:
raise NotImplementedError()
@staticmethod
def compile(spec: Union[type[_T],_T]=int) -> ParseFn[_T]:
if isinstance(spec, (type, GenericAlias)):
cls = typing.get_origin(spec) or spec
args = typing.get_args(spec) or tuple()
return Parser.compile_type(cls, args)
elif isinstance(offset := spec, Number):
cls = type(spec)
def parse(ts: TokenStream): return cls(next(ts)) + offset
return parse
elif isinstance(args := spec, tuple):
return Parser.compile_tuple(type(spec), args)
elif isinstance(args := spec, Collection):
return Parser.compile_collection(type(spec), args)
elif isinstance(fn := spec, Callable):
def parse(ts: TokenStream): return fn(next(ts))
return parse
else:
raise NotImplementedError()
@staticmethod
def compile_line(cls: _T, spec=int) -> ParseFn[_T]:
if spec is int:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([int(token) for token in ts.line()])
return parse
else:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([fn(ts) for _ in ts.wait()])
return parse
@staticmethod
def compile_repeat(cls: _T, spec, N) -> ParseFn[_T]:
fn = Parser.compile(spec)
def parse(ts: TokenStream): return cls([fn(ts) for _ in range(N)])
return parse
@staticmethod
def compile_children(cls: _T, specs) -> ParseFn[_T]:
fns = tuple((Parser.compile(spec) for spec in specs))
def parse(ts: TokenStream): return cls([fn(ts) for fn in fns])
return parse
@staticmethod
def compile_tuple(cls: type[_T], specs) -> ParseFn[_T]:
if isinstance(specs, (tuple,list)) and len(specs) == 2 and specs[1] is ...:
return Parser.compile_line(cls, specs[0])
else:
return Parser.compile_children(cls, specs)
@staticmethod
def compile_collection(cls, specs):
if not specs or len(specs) == 1 or isinstance(specs, set):
return Parser.compile_line(cls, *specs)
elif (isinstance(specs, (tuple,list)) and len(specs) == 2 and isinstance(specs[1], int)):
return Parser.compile_repeat(cls, specs[0], specs[1])
else:
raise NotImplementedError()
class Parsable:
@classmethod
def compile(cls):
def parser(ts: TokenStream): return cls(next(ts))
return parser
@overload
def read() -> Iterable[int]: ...
@overload
def read(spec: int) -> list[int]: ...
@overload
def read(spec: Union[Type[_T],_T], char=False) -> _T: ...
def read(spec: Union[Type[_T],_T] = None, char=False):
if not char and spec is None: return map(int, TokenStream.default.line())
parser: _T = Parser.compile(spec)
return parser(CharStream.default if char else TokenStream.default)
def write(*args, **kwargs):
'''Prints the values to a stream, or to stdout_fast by default.'''
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", IOWrapper.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
def monotone_minima(N: int, M: int, func: Callable[[int,int,int],bool]):
'''
Finds row minima in a totally monotone N×M matrix using the SMAWK algorithm.
The matrix is defined implicitly through the comparison function.
A matrix is totally monotone if the minimum in row i occurs at column j,
then the minimum in row i+1 must occur at column j' where j ≤ j'.
Time: O(N log M), Space: O(N)
Args:
N: Number of rows
M: Number of columns
func(i,j,k): Returns True if element (i,j) < element (i,k)
Returns:
List of column indices containing the minimum value for each row
Example:
# Find minima where each element is (i-j)²
min_indices = monotone_minima(5, 5, lambda i,j,k: (i-j)**2 < (i-k)**2)
'''
min_j, st = [0] * N, elist(N)
st.append((0, N, 0, M))
while st:
li, ri, lj, rj = st.pop()
if li == ri: continue
mi, mj = li + ri >> 1, lj
for j in range(lj + 1, rj):
if func(mi, mj, j): mj = j
min_j[mi] = mj
st.append((li, mi, lj, mj+1))
st.append((mi+1, ri, mj, rj))
return min_j
def elist(est_len: int) -> list: ...
try:
from __pypy__ import newlist_hint
except:
def newlist_hint(hint):
return []
elist = newlist_hint
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
x₀ ────────●─●────────●───●────────●───────●────────► X₀
╳ ╲ ╱ ╲ ╱
x₄ ────────●─●────────●─╳─●────────●─╲───╱─●────────► X₁
╳ ╳ ╲ ╲ ╱ ╱
x₂ ────────●─●────────●─╳─●────────●─╲─╳─╱─●────────► X₂
╳ ╱ ╲ ╲ ╳ ╳ ╱
x₆ ────────●─●────────●───●────────●─╳─╳─╳─●────────► X₃
╳ ╳ ╳ ╳
x₁ ────────●─●────────●───●────────●─╳─╳─╳─●────────► X₄
╳ ╲ ╱ ╱ ╳ ╳ ╲
x₅ ────────●─●────────●─╳─●────────●─╱─╳─╲─●────────► X₅
╳ ╳ ╱ ╱ ╲ ╲
x₃ ────────●─●────────●─╳─●────────●─╱───╲─●────────► X₆
╳ ╱ ╲ ╱ ╲
x₇ ────────●─●────────●───●────────●───────●────────► X₇
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
Math - Convolution
'''
def minplus_conv_arb_cnvx(arb: list[int], cnvx: list[int]) -> list[int]:
N, M = len(cnvx), len(arb)
def cmp(i, j, k):
return i >= k and (i-j >= N or (cnvx[i-j] + arb[j] >= cnvx[i-k] + arb[k]))
cols = monotone_minima(N+M-1, M, cmp)
return [arb[j] + cnvx[i-j] for i, j in enumerate(cols)]
def minplus_conv_cnvx(A: list[int], B: list[int]) -> list[int]:
if not (N := len(A)) | (M := len(B)): return []
C = [0] * (K:=N+M-1)
C[0], I, J = A[i := 0] + B[j := 0], N-1, M-1
for k in range(1, K):
if j == J or (i != I and A[i+1] + B[j] < A[i] + B[j+1]): i += 1
else: j += 1
C[k] = A[i] + B[j]
return C
def minplus_iconv(A: list[int], B: list[int]):
N, M = len(A), len(B)
for i in range(N-1,-1,-1):
A[i] = min(B[j] + A[i-j] for j in range(min(M,i+1)))
if __name__ == "__main__":
main()