This documentation is automatically generated by online-judge-tools/verification-helper
import cp_library.math.table.__header__
import operator
from typing import Callable
from cp_library.ds.reserve_fn import reserve
class Primes(list[int]):
def __init__(P, N: int):
super().__init__()
spf = [0] * (N + 1)
spf[0], spf[1] = 0, 1
reserve(P, N)
for i in range(2, N + 1):
if spf[i] == 0:
spf[i] = i
P.append(i)
for p in P:
if p > spf[i] or i*p > N: break
spf[i*p] = p
P.spf = spf
def divisor_zeta(P, A: list[int], op: Callable[[int,int], int] = operator.add) -> list[int]:
N = len(A)-1
for p in P:
for i in range(1, N//p+1): A[i*p] = op(A[i*p], A[i])
return A
def divisor_mobius(P, A: list[int], diff: Callable[[int,int], int] = operator.sub) -> list[int]:
N = len(A)-1
for p in P:
for i in range(N//p, 0, -1): A[i*p] = diff(A[i*p], A[i])
return A
def multiple_zeta(P, A: list[int], op: Callable[[int,int], int] = operator.add) -> list[int]:
N = len(A)-1
for p in P:
for i in range(N//p, 0, -1): A[i] = op(A[i], A[i*p])
return A
def multiple_mobius(P, A: list[int], diff: Callable[[int,int], int] = operator.sub) -> list[int]:
N = len(A)-1
for p in P:
for i in range(1, N//p+1): A[i] = diff(A[i], A[i*p])
return A
def gcd_conv(P, A: list[int], B: list[int], add = operator.add, sub = operator.sub, mul = operator.mul):
A, B = P.multiple_zeta(A, add), P.multiple_zeta(B, add)
for i, b in enumerate(B): A[i] = mul(A[i], b)
return P.multiple_mobius(A, sub)
def lcm_conv(P, A: list[int], B: list[int], add = operator.add, sub = operator.sub, mul = operator.mul):
A, B = P.divisor_zeta(A, add), P.divisor_zeta(B, add)
for i, b in enumerate(B): A[i] = mul(A[i], b)
return P.divisor_mobius(A, sub)
'''
╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸
https://kobejean.github.io/cp-library
'''
import operator
from typing import Callable
def reserve(A: list, est_len: int) -> None: ...
try:
from __pypy__ import resizelist_hint
except:
def resizelist_hint(A: list, est_len: int):
pass
reserve = resizelist_hint
class Primes(list[int]):
def __init__(P, N: int):
super().__init__()
spf = [0] * (N + 1)
spf[0], spf[1] = 0, 1
reserve(P, N)
for i in range(2, N + 1):
if spf[i] == 0:
spf[i] = i
P.append(i)
for p in P:
if p > spf[i] or i*p > N: break
spf[i*p] = p
P.spf = spf
def divisor_zeta(P, A: list[int], op: Callable[[int,int], int] = operator.add) -> list[int]:
N = len(A)-1
for p in P:
for i in range(1, N//p+1): A[i*p] = op(A[i*p], A[i])
return A
def divisor_mobius(P, A: list[int], diff: Callable[[int,int], int] = operator.sub) -> list[int]:
N = len(A)-1
for p in P:
for i in range(N//p, 0, -1): A[i*p] = diff(A[i*p], A[i])
return A
def multiple_zeta(P, A: list[int], op: Callable[[int,int], int] = operator.add) -> list[int]:
N = len(A)-1
for p in P:
for i in range(N//p, 0, -1): A[i] = op(A[i], A[i*p])
return A
def multiple_mobius(P, A: list[int], diff: Callable[[int,int], int] = operator.sub) -> list[int]:
N = len(A)-1
for p in P:
for i in range(1, N//p+1): A[i] = diff(A[i], A[i*p])
return A
def gcd_conv(P, A: list[int], B: list[int], add = operator.add, sub = operator.sub, mul = operator.mul):
A, B = P.multiple_zeta(A, add), P.multiple_zeta(B, add)
for i, b in enumerate(B): A[i] = mul(A[i], b)
return P.multiple_mobius(A, sub)
def lcm_conv(P, A: list[int], B: list[int], add = operator.add, sub = operator.sub, mul = operator.mul):
A, B = P.divisor_zeta(A, add), P.divisor_zeta(B, add)
for i, b in enumerate(B): A[i] = mul(A[i], b)
return P.divisor_mobius(A, sub)